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1 Analysis of Single Pile 

1.1 Preface 

Various problems in geotechnical Engineering can be investigated by the program GEO Tools. The 

original version of GEO Tools in GEOTEC Office was developed by Prof. M. Kany, Prof. M. El 

Gendy (1), and Dr. A. El Gendy. After the death of Prof. Kany, Prof. M. El Gendy and Dr. A. El Gendy 

further developed the program to meet the needs of the practice.  

 

This book describes the procedures and methods available in GEO Tools to analyze the single pile. 

The methods consider various analysis aspects of the single pile such as linear analysis, nonlinear 

analysis, half-space soil, and multi-layered soil.  

 

GEO Tools has been developed for analyzing the single pile using: 

• Rigid analysis 

• Elastic analysis 

 

Many tested examples are presented to verify and illustrate the available methods.  
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1.2 Determining settlement in soil 

In 1936 Raymond Mindlin [13] presented a mathematical solution for determining stresses and 

displacements in soil due to a point load acting beneath the surface of the semi-infinite mass. The 

following paragraphs illustrate the essential equations to obtain the settlement (displacements) in soil 

due to loads acting beneath the surface of the semi-infinite mass. The derivation of equations depends 

on Mindlin’s solution. These equations are often employed in the numerical analysis of piled 

foundations. They may have other Geotechnical Engineering applications, such as studying the 

interaction between foundations and ground anchors or buried structures. 

1.2.1 Displacement due to a concentrated load 

The displacement wi [m] at point i due to a concentrated load Pj [kN] acting at point j beneath the 

surface of a semi-infinite mass, Figure 1.1, according to Mindlin’s solution can be expressed as: 

 

P f = w jiji                                                        (1.1) 

 

where fij is given by Mindlin’s solution as: 

 















R

c +z z  c 
 + 

R

z cc +z  
 + 

R

c -z 
 +

 
R

 
 + 

R

 
 

  G  
 = f

s

sss

ss

ij

5
2

2

3
2

2

3
1

2

2

2

1

)(62-)( )ν4 - (3)(

)ν4 - (3 - )ν- (1 8ν4 - 3

)ν- (1π16

1

                            (1.2) 

 

where: 

and ) + ( +  =   ,)(
22

2

22
1 czrRc -z  + r = R  

c  Depth of the point load Pj [kN] from the surface, [m]. 

z  Depth of the studied point i from the surface, [m]. 

r  Radial distance between points i and j, [m]. 

z-c  Vertical distance between points i and j, [m]. 

z+c  Vertical distance between points i and k, [m]. 

fij Displacement factor of point i due to a unit load at point j, [m/kN]. 

Gs Shear modulus of the soil, [kN/m2],
)ν(1 2 s

s
s

 + 

E
= G . 

Es Modulus of elasticity of the soil, [kN/m2]. 

νs Poisson’s ratio of the soil, [-]. 
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Figure 1.1 Geometry of Mindlin's problem. 

1.2.2 Displacement at the center due to a circular uniform load 

The displacement wi [m] at the center i of a circular loaded area of radius ro [m] and a uniform load 

q [kN/m2] beneath the surface of a semi-infinite mass, Figure 1.2, can be obtained from: 

 


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iji d dr r f q = w
0

2π
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θ                                                  (1.3) 

 

Substituting Eq. (1.2) into Eq. (1.3) and carrying out the integration, yields to: 
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Figure 1.2 Geometry of circular loaded area for finding displacement at center. 

At depth z = c, the displacement at the center of a circularly loaded area is given by: 
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1.2.3 Displacement at the edge due to a circular uniform load 

The displacement wi [m] at the edge i of a circularly loaded area of radius ro [m] and a uniform load 

q [kN/m2] beneath the surface of a semi-infinite mass, Figure 1.3,  can be obtained from: 

 


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iji d dr r fq  = w                                           (1.6) 

 

The integral with respect to r in the above equation can be carried out analytically, while that with 

respect to θ is evaluated numerically. This is because the first integration will contain terms with 

complete elliptic integrals, which cannot be integrated into a closed-form. Substituting Eq. (1.2) into 

Eq. (1.6) and carrying out the integration with respect to r leads to: 

 

I + I = w ri θ                                                            (1.7) 

 

where terms Ir and Iθ are given by: 
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The integral Iθ may be evaluated numerically using Simpson’s rule. In performing the numerical 

integration, intervals of π/50 in θ were adequate according to Poulos/ Davis (1968) [16]. 

 

 
Figure 1.3 Geometry of circular loaded area for finding the displacement at edge. 

1.2.4 Displacement due to a line load 

The displacement wi [m] at the point i due to a line load T [kN/m] beneath the surface of a semi-

infinite mass, Figure 1.4, can be obtained from: 
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 dc f T = w
l

l iji 
2

1

                                                      (1.10) 

 

Substituting Eq. (1.2) into Eq. (1.10) and carrying out the integration, leads to: 
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Figure 1.4 Geometry of line load. 

1.2.5 Displacement at the center due to a cylindrical surface stress 

The displacement wi [m] at the center i of a cylindrical surface of radius ro and height l with stress τ 

[kN/m2] acting on its surface beneath the surface of a semi-infinite mass, Figure 1.5, can be obtained 

from: 
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Substituting Eq. (1.2) into Eq. (1.12) and carrying out the integration, leads to: 
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Figure 1.5 Geometry of cylindrical surface stress for finding the displacement at center. 

where terms I1 to I5 are given by: 
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l2  End depth of the line load T or the shear stress τ from the surface, [m]. 

l  Length of the line load T or the shear stress τ, [m]. 

r1  Radial distance between point i and j [m]. r1 = ro for shaft load and r1 = r for line load. 

1.2.6 Displacement at the edge due to a cylindrical surface stress 

The displacement wi [m] at the edge i of a cylindrical surface of radius ro and height l with stress τ 

[kN/m2] acting on its surface beneath the surface of a semi-infinite mass, Figure 1.6, can be obtained 

from: 
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The integral with respect to c in the above equation can be carried out analytically, while that with 

respect to θ is evaluated numerically. This is because the first integration will contain terms with 

complete elliptic integrals, which cannot be integrated into a closed-form. Substituting Eq. (1.2) into 

Eq. (1.19) and carrying out the integration with respect to c leads to: 
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where terms I1 to I5 are in Eqns (1.14) to (1.18) with replacing r1 by 2 ro cos θ. Integrals in the above 

equations may be evaluated numerically using Simpson’s rule. 

 

 
Figure 1.6 Geometry of cylindrical surface stress for finding the displacement at edge. 

The factors are evaluated through numerical integration to determine the displacement factors for 

nodes located at the pile shaft. An equivalent line load replaces shaft stress to avoid the significant 

computations when applying Mindlin’s solution to determine the displacement factors for nodes 

located outside the pile, while an equivalent point load replaces a circular load at the base. 
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1.3 Determining flexibility coefficients 

The pioneer authors of the piled raft, such as Poulos & Davis (1968) [16] and Butterfield & 

Banerjee (1971) [4], integrated coefficients of flexibility numerically using Mindlin’s solution 

(Mindlin (1936) [13]). Analysis of piled raft using numerical coefficients leads to significant 

computations, especially in large pile group problems. An analytical derivation of coefficients of 

flexibility using Mindlin’s solution is presented. 

1.3.1 Flexibility coefficient fi, b of a node i due to a unit force on the base b 

An equivalent point load replaces a circular load to avoid significant computations when applying 

Mindlin’s solution to determine the flexibility coefficients for nodes located outside the base. In this 

case, the flexibility coefficient can be obtained directly from Mindlin’s solution for determining the 

displacement wij [m] at point i due to a point load Qj [kN] acting at point j beneath the surface of a 

semi-infinite mass (Figure 1.1). 

 

The flexibility coefficient fi, b [m/kN] of node i due to a unit force Qb = 1 [kN] acting on the base b is 

equal to the displacement factor fij in Eq. (1.2). In this case, r is the radial distance between point i 

and the base point b. For the pile of the studied base b, r is equal to the radius of the base ro. 

1.3.2 Flexibility coefficient fb, b of the base b due to a unit force on the base itself 

The base b of the pile has a circularly loaded area of radius ro [m] and a uniform load q = Qb / π ro
2 

[kN/m2], as shown in Figure 1.2. The flexibility coefficient fb, b [m/kN] at the base center b due to a 

unit load Qb = 1 [kN] at the base itself can be obtained from: 
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The integration of the flexibility coefficient can be obtained analytically as: 
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The flexibility coefficient fb, b may be multiplied by a factor π/4 to take the effect of base rigidity. 

This factor is the ratio of the surface displacement of a rigid circle on the surface of a half-space to 

the center displacement of a corresponding uniformly loaded circle. 

1.3.3 Flexibility coefficient fi, j of node i due to a unit force on a node shaft j 

An equivalent line load replaces the shaft stress to avoid the significant computations when 

applying Mindlin’s solution to determine the flexibility coefficients due to shaft stress. The shaft 

element j of the pile has a length l [m] and a line load T = Qj / l [kN/m], as shown in Figure 1.4. The 

flexibility coefficient fi, j [m/kN] at the point i due to a unit load Qj = 1 [kN] at a shaft element j can 

be obtained from: 

 dc f 
l

1
 = f

l

l ijj i, 
2
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                                                        (1.23) 

The integration yields to: 

 



GEO Tools 
 

1.12 

( )I + I + I + I + I 
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where terms I1 to I5 are given in Eq. (1.14) to Eq. (1.18). 

1.3.4 Flexibility coefficient fb, j of the base b due to a unit force on a node shaft j 

The base b of the pile has a radius ro [m], while the shaft element j has a length l [m] and a shear 

stress τ = Qj / 2 π ro l [kN/m2], as shown in Figure 1.5. The flexibility coefficient fb, j [m/kN] at the 

base center b due to a unit load Qj = 1 [kN] at a shaft element j can be obtained from: 
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The integration yields to: 
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Replacing r1 by ro in Eq. (1.14) to Eq. (1.18) gives terms J1 to J5. 

1.3.5 Multi-layered soil 

Flexibility coefficients described previously can be applied only for isotropic elastic half-space soil 

medium. For finite layers, flexibility coefficients may be obtained as described by Poulos & Davis 

(1968) [16]. As an example, for a point k in a layer of depth h, the flexibility coefficient is then: 

 

( ) ( ) ( ) f - f = hf j h,j k,j k,
                                       (1.27) 

where: 

fk, j (h) Flexibility coefficient for a point k in a layer of depth h due to a unit load on point j, [m/kN]. 

fk, j (∞) Flexibility coefficient for a point k due to a unit load on point j, in a semi-infinite mass, 

[m/kN]. 

fh, j (∞) Flexibility coefficient for a point within the semi-infinite mass directly beneath k, at a depth 

h below the surface due to a unit load on point j, [m/kN]. 
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1.4 Modeling single pile 

In standard methods of analyzing piled rafts based on elasticity theory, the entire soil stiffness matrix 

of the piled raft is assembled due to all elements of piles and raft. Then, settlements of piled raft 

elements are obtained directly by solving the global equations. Based on elasticity theory El Gendy 

(2007) [7] presented a more efficient analysis of single pile, pile group, and piled raft by using the 

composed coefficient technique to reduce the size of the entire soil stiffness matrix. In this technique, 

the pile is treated as a rigid member having a uniform settlement on its nodes. This assumption enables 

assembly pile coefficients in composed coefficients. It can easily model the nonlinear response of 

single pile, pile groups, or piled rafts. The composed coefficient technique makes the soil stiffness 

matrix of the piled raft size equivalent to that of the raft alone without piles. The proposed analysis 

considerably reduces the number of equations that need to be solved. The raft can be analyzed as 

flexible, rigid, or elastic on a continuum soil medium. The advantage of the analysis is that there is 

no approximation when generating the flexibility coefficients of the soil. In this analysis, the full 

interaction among piled raft elements is taken into account by generating the entire flexibility matrix 

of the piled raft. Using the composed coefficient technique enables the application of the nonlinear 

response of the pile by a hyperbolic relation between the load and settlement of the pile. Also, El 

Gendy (2007) [7] introduced a direct hyperbolic function for the nonlinear analysis of a single pile. 

Besides, an iteration method is developed to solve the nonlinear equations system of pile groups or 

piled rafts. This book presents numerical modeling single pile according to El Gendy (2007) [7]. 

 

To carry out the analysis, a composed coefficient or modulus ks [kN/m] representing the linear soil 

stiffness of the pile is determined. The modulus ks is a parameter used in both linear and nonlinear 

analysis of the pile. It is defined as the ratio between the applied force on the pile head Ph [kN] and 

the pile settlement wo [m]. The modulus ks is not a soil constant. It depends on pile load, pile 

geometry, and the stratification of the soil. It is analogous to the modulus of subgrade reaction of the 

raft on Winkler’s soil medium (Winkler (1867) [20]), which is the ratio between the average contact 

pressure and the settlement under the characteristic point on the raft. This section describes a method 

to obtain the modulus ks from the rigid analysis of the pile. 

 

1.4.1 Soil flexibility for single pile 

In the analysis, the pile is divided into shaft elements with m nodes, each acted upon by a uniform 

shear stress qsj [kN/m2] and a circular base with a uniform stress qb [kN/m2], as shown in Figure 1.7a. 

Pile shaft elements are represented by line elements to carry out the analysis, as indicated in Figure 

1.7b. All stresses acting on shaft elements are replaced by a series of concentrated forces acting on 

line nodes. The shear force on node j may be expressed as: 

 

j

jj

oj qs
ll

rQs
2

 π2
1 +

=
−

                                                 (1.28) 

 

while the force on the pile base may be expressed as: 

 

qbrQb o

2 π=                                                          (1.29) 

 

where: 

j - 1 and j  Node number of element j 

Qsj  Shear force on node j [kN] 

Qb  Force on the base [kN] 

ro Radius of the pile [m] 

lj Length of the element j [m] 
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The soil is represented as a layered or isotropic elastic half-space medium to consider the interaction 

between pile and soil. Assuming a typical node i as shown in Figure 1.7b, the settlement si of the soil 

adjacent to the node i due to shear forces Qsj on all m nodes and due to the base force Qb is expressed 

as: 

 

Qb f + Qs f  = s
b i,jj i,

m

j

i 
1=

                                                     (1.30) 

where: 

fi, j  Flexibility coefficient of node i due to a unit shear force on a node shaft j [m/kN] 

fi, b  Flexibility coefficient of node i due to a unit force on the base b [m/kN] 

 

 
 

Figure 1.7 Pile geometry and elements. 

As a special case of Eq. (1.30) and by changing the index i to b, the settlement of the base sb may be 

expressed as: 

 

Qb f + Qs f  = s
b b,jj b,

m

j

b 
1=

                                                     (1.31) 

 

where: 

fb, j  Flexibility coefficient of the base b due to a unit shear force on a node shaft j [m/kN] 

fb, b  Flexibility coefficient of the base b due to a unit force on the base b [m/kN] 

 

Equations (1.30) and (1.31) for the settlement of the soil adjacent to all nodes of the pile may be 

rewritten in general form as: 
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Q I  = w
jj i,

n

j

i 
1=

                                                             (1.32) 

where: 

Qj  Contact force on node j [kN]. Qj represents the shear forces Qsj on the shaft nodes or a base 

force Qb 

wi  Settlement on node i [m]. wi represents the settlement sj on a shaft node j or settlement sb on 

the base 

n Total number of contact nodes, n = m + 1 

Ii, j  Flexibility coefficient of node i due to a unit force on node j [m/kN]. Ii, j represents the 

coefficient fi, j, fi, b, fb, j or fb, b. These coefficients can be evaluated from elastic theory using 

Mindlin’s solution. Closed-form equations for these coefficients are described in the next 

paragraph 

 

1.4.2 Elastic analysis of single pile 

1.4.2.1 Soil settlement 

Equation (1.32) for settlements of the soil adjacent to all nodes of the pile may be written in a matrix 

form as: 

                          Q Is = w                                                           (1.33) 

 

where: 

{w} n settlement vector 

{Q} n contact force vector 

[Is] n * n soil flexibility matrix 

 

Inverting the soil flexibility matrix in Eq. (1.33), leads to: 

 

                          w ks = Q                                                           (1.34) 

 

where [ks] is n * n soil stiffness matrix, [ks] = [Is]-1. 

 

Equation (1.34) may be modified as: 
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Equation (1.35) is rewritten in a compacted matrix form as: 

 

                          s ke = Qs                                                            (1.36) 

 

where: 

{s} n + 1 settlement vector, {s} = {o, s1, s2, s3, …, sn, sb}T 

{Qs} n + 1vector of contact forces on the pile, {Q} = {o, Qs1, Qs2, Qs3, …, Qsn, Qb}T 

 [ke]  n + 1 * n + 1 soil stiffness matrix 
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1.4.2.2 Pile displacement 

 

The finite element method is used for analyzing the pile. Only the axial compression of the pile is 

considered in determining displacements of pile elements. The beam stiffness matrix of the pile 

element i can be expressed as: 

 

                          
l

ApEp
= kp

i

i

i 








−

−

11

11

                                                (1.37) 

 

where: 

Ep Modulus of Elasticity of the pile material [kN/m2] 

Api Cross-section area of the pile element i [m2] 

li Length of the pile element i [m] 

 

According to the principal of the finite element method, the assembled axial stiffness matrix equation 

for the pile can be written as: 

 

                            Qs P = kp −δ                                                        (1.38) 

 

where: 

{δ} n + 1 Displacement vector 

{P} n + 1 vector of applied load on the pile, {P} = {Ph, o, o, o,…, o}T 

 [kp] n + 1 * n + 1 beam stiffness matrix 

 

Substituting Eq. (1.36) in Eq (1.38) leads to: 

 

                            ske P = kp ][δ −                                                       (1.39) 

 

Assuming full compatibility between pile displacement δi and soil settlement si, the following 

equation can be obtained: 

 

                             P = kekp δ+                                                        (1.40) 

 

Solving the above system of linear equations gives the displacement at each node equal to the soil 

settlement at that node. Substituting soil settlements from Eq. (1.40) in Eq. (1.36) provides contact 

forces on the pile. 

 

1.4.3 Rigid analysis of single pile 

 

For a rigid pile, the settlement will be uniform. Therefore, the unknowns of the problem are n contact 

forces Qj and the rigid body translation wo. The derivation of the uniform settlement for the rigid pile 

can be carried out by equating the settlement wi in Eq. (1. 32) by a uniform translation wo at all nodes 

on the pile. Expanding Eq. (1. 32) for all nodes yields to: 
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Contact forces can be written as a function in terms ki, j of the soil stiffness matrix [ks] as: 
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                                  (1.42) 

Carrying out the summation of all contact forces leads to: 

 

k woQ j i,

n

j=

n

=i

i

n

=i

  = 
111

                                                     (1.43) 

 

Equation (1.43) may be rewritten as: 

 

 woks = Ph                                                                      (1.44) 

 

where the applied force Ph [kN] is the sum of all contact forces Qi: 

 

Q = Ph i

n

i


1=

                                                               (1.45) 

 

while the composed coefficient ks [kN/m] is the sum of all coefficients of the soil stiffness matrix 

[ks]: 

k  = ks j i,

n

j=

n

=i


11

                                                            (1.46) 

 

Eq. (1.44) gives the linear relation between the applied load on the pile head and the uniform 

settlement wo, analogous to Hook’s law. Therefore, the composed coefficient ks may be used to 

determine the total soil stiffness adjacent to the pile. In analyzing a single pile, it is easy to determine 

the contact forces Qi. Substituting the value of wo from Eq. (1.44) in Eq. (1.47) gives Eq. (1.42) in n 

unknown contact forces Qi as: 

ks

k Ph

 = Q

j i,

n

j=

i


1

                                                             (1.47) 

 

Equation (1.47) of contact forces on the rigid pile is found to be independent of the Modulus of 

elasticity of the soil Es in the case of isotropic elastic half-space soil medium. 
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1.4.4 Nonlinear rigid analysis of single pile 

Nonlinear analysis is an important consideration since piles may be loaded close to their maximum 

capacity, even under working conditions. A hyperbolic relation between the pile load and settlement 

is considered to determine the nonlinearity of the pile. Figure 1.8 shows a typical nonlinear curve of 

load-settlement for a wide range of soils. The curve is approximated through a hyperbolic 

interpolation formula where several equation forms are available to verify this curve. 

 

 
Figure 1.8 Load-settlement curve of a single pile (hyperbolic relation). 

Many methods were developed to study pile-soil systems with the nonlinear response using a 

hyperbolic relation between the load and settlement. Yamashita (1987) [21] present an analytical 

solution of a single pile and pile group based on Mindlin’s solution and introduced an equation 

representing the hyperbolic relationship between load and displacement. Also, Fleming (1992) [9] 

developed a method to analyze and predict the load-deformation behavior of a single pile using two 

hyperbolic functions describing the shaft and base performance individually under applied load. 

Analyzing nonlinear behavior by hyperbolic function was used by Mandolini/ Viggiani (1997) [12] 

for pile groups and was used by Russo (1998) [17] for the piled raft. They considered piles as 

nonlinear interacting springs based on the method of interaction factors. Basile (1999) [1] 

assumed Young’s modulus of the soil varies with the stress level at the pile-soil interface using a 

hyperbolic stress-strain relationship.  

 

Available nonlinear analysis of foundation on Winkler’s soil medium was presented by Baz (1987) 

[3] for the grid and by Hasnien (1993) [10] for the raft. El Gendy (1999) [6] extended this analysis to 

be applicable for a raft on a continuum soil medium. The composed coefficient technique described 

in the previous sections enables to apply this analysis on pile problems. 

 

The nonlinear behavior of the pile head force-settlement at the piled raft-soil interface may be 

represented as: 

Ql

wn
 + 

ks

wn
 = Ph

1
                                                           (1.48) 

where: 

wn Nonlinear settlement of the pile [m] 

Ql  Limit pile load [kN] 

Nonlinear settlement wn [m] 

Limit pile load Ql   

Nonlinear analysis 

ks 

Linear analysis 

Ultimate pile load Qu  
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In Figure 1.8 and Eq. (1.48), the initial tangent modulus for a single pile is easily obtained from linear 

analysis of the pile. This modulus is equal to the modulus of soil stiffness ks. The limit pile load Ql 

is a geometrical parameter of the hyperbolic relation. In some cases, the value of Ql is different from 

the actual ultimate pile load. For a single pile, the force on the pile head Ph is known. Therefore, Eq. 

(1.48) gives the nonlinear settlement of the pile wn directly. 
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1.5 Defining the project data 

1.5.1 Firm Header 

When printing the results, the main data (firm name) are displayed on each page at the top in two 

lines or in a graphic presentation at the identification box. Firm name can be defined, modified, and 

saved using the "Firm Header" Option from the setting Tab (see Figure 1.9). 

 

 
Figure 1.9 Firm Header. 

1.5.2 Task of the program GEO Tools (Analysis Type) 

GEO Tools program can be used to analyze various problems in Geotechnical Engineering for deep 

foundations and deep foundations, Figure 1.10. 

 
Figure 1.10 Problem type. 
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According to the main menu shown in Figure 1.10, the following geotechnical problems can be 

analyzed for shallow foundations: 

 

 

1. Analysis of single pile 

2. Bearing capacity and settlement of single pile or pile wall 

3. Analysis of piled raft 

4. Stress coefficients according to GEDDES 

5. Sheet pile wall 

6. Analysis of single barrette 

7. Analysis of barrette raft 

 

 

Figure 1.11 Problem type for deep foundation. 

In menu of Figure 1.10 select the option: 

 01- Analysis of single pile 

The following paragraph describes how to analyze a problem of the single pile by the program GEO 

Tools. The input data are the dimensions of the pile, pile load, pile material, and the properties of the 

soil layers. 
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1.5.3 Project Identification 

In the program, it must be distinguished between the following two data groups: 

 

1 System data (For identification of the project that is created and information to the 

output for the printer). 

 

2 Soil data (Soil properties and so on). 

 

The defining input data for these data groups is carried out as follows: 

 

After clicking on the "Project Identification" option, the following general project data are defined 

(Figure 1.12): 

 

Title:  Title label  

Date: Date 

Project: Project label  

 

 
Figure 1.12 Project Identification. 
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1.5.4 Defining the single pile data 

After clicking on the "Analysis of single pile" option, the following data of the pile problem are 

defined (Figure 1.13): 

 

Pile material: 

- Gp unit weight of pile concrete [kN/m3] 

- Ep Modulus of elasticity of pile [kN/m2] 

 

Pile data: 

- D Pile diameter   [m]  

- Lg Pile length   [m]  

- Ph Load on pile head  [kN]  

- Ql Limit pile load  [kN]  

- H Lateral load on pile  [kN]  

- M Bending moment on pile [kN.m]  

- Hli Lateral limit pile load  [kN]  

 

Calculation Task: 

- Linear Analysis 

- Nonlinear Analysis 

 

Subsoil model: 

- Half space-model 

- Layered soil model 

 

Element: 

- Dz Depth increment in z-direction [m]  

 

 
Figure 1.13 Analysis of single pile. 
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1.5.5 Data of soil layers  

After clicking on "Soil profile" option in the form of Figure 1.13, the following properties of the soil 

layers are required to define (Figure 1.14): 

- Level of layer underground  Z  [m] 

- Modulus of elasticity of soil  Es [kN/m2] 

- Poisson's ratio of soil   Nue [-] 

 

 
Figure 1.14 Soil data 
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1.6 Examples to verify single pile analysis  

 

A user-friendly computer program, GEO Tools [8], has been developed for analyzing the single pile 

using different subsoil models. With the help of this program, an analysis of various examples was 

carried out to verify and test the methods and the program for analyzing single pile problems. 

 

1.6.1 Example 1: Evaluation of settlement influence factor for a single pile  

1.6.1.1 Description of the problem 

Most piled raft analyses apply a numerical integration using Mindlin’s solution to determine 

flexibility coefficients of piles. Applying a numerical integration in the piled raft analysis leads to 

significant computations, especially in large piled raft problems. In this case study, closed-form 

equations derived from Mindlin’s solution are used in all calculations. The settlement influence 

factors I1 for a single pile obtained by Poulos (1968) [14] and Poulos/ Davis (1968) [16] are 

compared with those obtained by closed-form equations listed in this book to verify these equations 

for determining flexibility coefficients. 

 

From the analysis of a single pile carried out by Poulos/ Davis (1968), the settlement s1 [m] of a single 

pile is expressed as: 

 

11 I 
E L

P
 = s

s

                                                         (1.49) 

  

where: 

P  Load on the pile head [kN] 

L Pile length [m] 

Es  Young’s modulus of the surrounding soil mass [kN/m2] 

I1 Settlement influence factor for a single pile [-] 

 

A pile of length L = 12.5 [m] is chosen. The pile is divided into ten elements, each 1.25 [m]. Load on 

the pile head P and Young’s modulus of the surrounding soil mass Es are chosen to make the term 

P/Es of Eq. (1.49) equal to unit. Thus, load on the pile head is P = 5000 [kN], while Young’s modulus 

of the surrounding soil mass is Es = 5000 [kN/m2]. The settlement influence factor I1 is determined at 

different values of h/L and L/d, where h [m] is the thickness of the soil layer and d [m] is the pile 

diameter. 

1.6.1.2 Analysis and results 

The settlement influence factors I1 of a single pile published by Poulos (1968) [14] in Table 1 and 

Table 2 are compared with those obtained from the closed-form equations. The factors are tabulated 

for two different values of Poisson’s ratio of the soil νs. From these tables, it can be observed that the 

settlement influence factors obtained by closed-form equations at different soil layers and pile 

diameters are nearly equal to those obtained by Poulos (1968) [14] with a maximum difference of Δ 

= 2.78 [%]. 
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Table 1 Settlement influence factors I1 [-] for a single pile 

 Using closed-form equations, Poisson’s ratio of the soil νs = 0.5 [-] 
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Table 2 Settlement influence factors I1 [-] for a single pile 

 Using closed-form equations, Poisson’s ratio of the soil νs = 0.0 [-] 
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1.6.2 Example 2: Settlement of single compressible pile 

1.6.2.1 Description of the problem 

To verify the present analysis of a single pile within multi-layered soil, the settlement influence 

factors I1 published by Small/ Lee (1992) [19], De Sanctis / Russo (2002) [5], and Seo/ Prezzi (2007) 

[18] are compared with those obtained by the present analysis of a single pile using flexibility 

coefficient. 

 

An analytical analysis of a single pile embedded in a multi-layered soil medium is available in the 

reference Small/ Lee (1992) [19], De Sanctis / Russo (2002) [5], and Seo/ Prezzi (2007) [18]. Small/ 

Lee (1992) [19] and Seo/ Prezzi (2007) [18] compared results using the finite layer approach with 

those obtained by Poulos (1979) [15] using boundary element, boundary element equivalent modulus, 

and Finite Element and those obtained by Lee (1991) [11] using discrete layer. De Sanctis / Russo 

(2002) [5] compared results using the Boundary Element Method (BEM) based on the Steinbrenner 

approximation with those using the Finite Element. 

 

The pile shown in Figure 1.15 is considered and analyzed for five different cases under different 

subsoil conditions. For all cases L/d = 25, h/L = 2, Ep/Es = 1000, and Poisson's ratio νs = 0.3. The 

subsoil of each case consists of three layers except the last case, which has homogeneous soil. Each 

layer has a different Modulus of Elasticity Es. 

  

 
Figure 1.15 Single pile with subsoil, De Sanctis / Russo (2002) [5]. 

1.6.2.2 Analysis and results 

The settlement influence factors I1 of a single pile published by Small/ Lee (1992) [19], De Sanctis / 

Russo (2002) [5], and Seo/ Prezzi (2007) [18] in Table 3 are compared with those obtained from the 

closed-form equations. It can be observed that the settlement influence factors obtained by closed-

form equations for different subsoil profiles are nearly equal to those of the references. 
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Table 3 Settlement influence factors I1 [-] for a single pile 

Cases Case (1) Case (2) Case (3) Case (4) Homogeneous 
S
m

a
ll

/ 
L

ee
 (

1
9
9
2
) 

[1
9
] 

Boundary Element 

(Poulos, 1979) [15] 
0.965 0.915 - 0.825 - 

Boundary Element 

Equivalent Modulus 

(Poulos, 1979) [15] 

0.953 0.978 - 1.765 - 

Finite Element 

(Poulos, 1979) [15] 
0.943 0.955 - 1.075 - 

Discrete Layer (Lee, 

1991) [11] 
0.903 0.895 - 0.930 - 

Finite Layer 0.915 0.933 - 1.035 - 

D
e 

S
a
n
ct

is
 /

 R
u
ss

o
 

(2
0
0
2
) 

[5
] 

Finite Element 

(ABAQUS) 
0.862 0.876 0.929 1.027 1.731 

Boundary Element 

(Steinbrenner) 
0.761 0.777 1.071 1.579 1.780 

S
eo

/ 
P

re
zz

i 

(2
0
0
7
) 

[1
8
] 

Analytical solutions 0.84 0.808 - 0.773 - 

G
E

O
 T

o
o
ls

 

[8
] Closed-form 

equations 
0.708 0.724 1.042 1.644 

1.758 (Rigid) 

2.059 (Elastic) 
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1.6.3 Example 3: Linear Analysis of Single pile 

1.6.3.1 Description of the problem 

The pile settlements with pile length obtained by the present linear analysis using flexibility 

coefficient are compared with those obtained by Basu et al. (2008) [2] to verify the presented analysis 

of a single pile in multi-layered soil. Basu et al. (2008) [2] developed an analytical solution of a single 

pile embedded in a multi-layered soil medium. Two cases are considered and analyzed, as shown in 

Figure 1.16 and Figure 1.17. 

  

 
Figure 1.16 Single pile with subsoil, Basu et al. (2008) [2], Case (1). 
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Figure 1.17 Single pile with subsoil, Basu et al. (2008) [2], Case (2). 

1.6.3.2 Results 

The pile settlement s along the pile length obtained from the present analysis using GEO Tools [8] 

are compared with Basu et al.'s (2008) [2] results, as shown in Figure 1.18 and Figure 1.19. These 

results indicate that the verification results of the present analysis are in good agreement with those 

of Basu et al. (2008) [2].  
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Figure 1.18 Settlement s [cm] along the pile length, Case (1). 

 
Figure 1.19 Settlement s [cm] along the pile length, Case (2). 
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1.6.4 Example 4: Nonlinear Analysis of Single pile 

1.6.4.1 Description of the problem 

The single pile results obtained by the present nonlinear analysis are compared with those obtained 

by Seo/ Prezzi (2007) [18] to verify the present nonlinear analysis of a vertically loaded single pile. 

Seo/ Prezzi (2007) [18] presented an analytical solution of a single pile embedded in a multi-layered 

soil medium and compared the results with a pile load test. 

 

The single barrette shown in Figure 1.20 is analyzed nonlinearly with different vertical loads values. 

The subsoil of this case consists of three different layers. Each layer has a different modulus of 

elasticity Es and Poisson's ratio νs. 

 

 
Figure 1.20 Single pile with subsoil, Seo/ Prezzi (2007) [18]. 

1.6.4.2 Results 

The pile settlement s along the pile length obtained from the present analysis using GEO Tools [8] 

are compared with Seo/ Prezzi's (2007) [18] results, as shown in Figure 1.21 and Figure 1.22. These 

results indicate that the verification results of the present analysis are in good agreement with those 

of Seo/ Prezzi (2007) [18].  
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Figure 1.21 Settlement s [cm] along the pile length, P = 542 [kN]. 

 
Figure 1.22 Load-displacement curve. 
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1.6.5 Example 5: Case Study of Load Tests 

1.6.5.1 Description of the problem 

To verify the present nonlinear analysis of a single pile in multi-layered soil, load-displacements 

obtained by the presented nonlinear analysis using GEO Tools [8] are compared with those measured 

results from pile load tests presented by Yamashita et al. (1987) [21]. For cases are considered and 

analyzed. Piles dimensions are listed in Table 4. The soil properties of each case are listed in Table 

5. 

 

Table 4 Piles dimensions 

Case No. 1 2 3 4 

Pile diameter d [m] 1.5 1.2 0.8 1.0 

Pile length L [m] 46.6 16 44.4 34.4 

Modulus of elasticity of the 

pile material Ep [MN/m2] 
2.75×106 2.6×106 2.6×106 3.0×106 

 

Table 5 Soil properties 

Case 
Layer No. 

I 

Layer depth from the ground 

surface z [m] 

Modulus of elasticity 

Es [MN/m2] 

Poisson’s ratio 

νs [-] 

1 

1 4.6 42000 

0.4 

2 9.2 63000 

3 13.8 54900 

4 18.4 66900 

5 23 111600 

6 27.6 153000 

7 32.2 177000 

8 36.8 198000 

9 41.4 219000 

10 46 243000 

11 60 264000 

2 

1 1.60 33000 

0.3 

2 3.20 28800 

3 4.80 36600 

4 6.40 44400 

5 8.00 46800 

6 9.60 39000 

7 11.20 34800 

8 12.80 37200 

9 14.40 43200 

10 16.00 42000 

11 30.00 44000 
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Case 
Layer No. 

I 

Layer depth from the ground 

surface z [m] 

Modulus of elasticity 

Es [MN/m2] 

Poisson’s ratio 

νs [-] 

3 

1 4.44 54000 

0.4 

2 8.88 63000 

3 13.32 84000 

4 17.76 105000 

5 22.20 126000 

6 26.64 147000 

7 31.08 168000 

8 35.52 189000 

9 39.96 234000 

10 44.40 210000 

11 60.00 249000 

4 

1 3.43 0 

0.3 

2 6.86 0 

3 10.29 72000 

4 13.72 87000 

5 17.15 105000 

6 20.58 106950 

7 24.01 29400 

8 27.44 36600 

9 30.87 58200 

10 34.30 69600 

11 60.00 128000 

1.6.5.2 Results 

The load-displacements obtained from the present analysis using GEO Tools [8] are compared with 

the pile load tests published in Yamashita et al. (1987) [21], as shown in Figure 1.23 to Figure 1.26. 

These results indicate that the verification results of the present analysis are in good agreement with 

those of Yamashita et al. (1987) [21].  
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Figure 1.23 Load settlement curve, Case (1). 

 
Figure 1.24 Load settlement curve, Case (2). 
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Figure 1.25 Load settlement curve, Case (3). 

 
Figure 1.26 Load settlement curve, Case (4). 
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