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Preface 

 

Various problems in Geotechnical Engineering can be investigated by GEO Tools. M. Kany and (M. 

@ A.)  El Gendy developed the original version of GEO Tools in ELPLA package for analyzing elastic 

foundation. After the death of Kany and (M. & A.) El Gendy further developed the program to meet 

the needs of the practice.  

 

This book describes the essential methods used in GEO Tools for analyzing beam on elastic 

foundations. GEO Tools is a simple user interface program and needs little information to define a 

problem.  

 

There are three soil models with five methods available in GEO Tools for analyzing beam 

foundations.  
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10 Analysis of Beam Foundations after Kany and El Gendy 

10.1 Introduction 

Different calculation methods are known in the literature for the calculation of shallow foundations. 

The early one is that assumes a uniform contact pressure distribution under shallow foundations. This 

assumption is too far from the reality. Winkler (1867) and Zimmermann (1930) developed the 

modulus of subgrade method. In the method, the subsoil is simulated by isolated springs. The 

settlement of the spring is only dependent on the loading at the same point on the subsoil surface at 

the spring location. This also applies to possible refinements with springs of different stiffness. 

 

However, Boussinesq (1885) had already recognized that when the subsoil is loaded at one point, the 

subsoil also settles outside the load point. Therefore, it does not behave like a spring. Because of this 

finding, Ohde (1942) developed a calculation method for the first time, with which shallow 

foundations can be analyzed, taking into account the soil structure interaction. This method, which is 

called modulus of compressibility method, was later further developed by different authors (Graßhoff 

(1966-1978), Kany (1974), Graßhoff/Kany (1992)). GEO Tools is based on the modulus of 

compressibility method after Kany (1974) and the modulus of subgrade reaction method after Kany/ 

El Gendy (1995). However, some refinements are included, some of which are new and have not yet 

been dealt with in detail in the literature. It is therefore necessary to explain the calculation methods 

in more detail than usual in order to be able to check the results and compare them with other results. 
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10.2 Calculation methods  

10.2.1 General 

Beam foundations may be analyzed using classical subsoil models. Such as Winkler's model 

according to Winkler (1867), Graßhoff (1978) and Wölfer (1978) and Continuum model according to 

Ohde (1942), Graßhoff (1978) and Kany (1974). In addition, cases of small and irregular beam 

foundations can be analyzed by fewer extensive methods using tables and charts. 

 

It is possible by GEO Tools to use the same data for analyzing beam foundations by five different 

conventional and refined calculation methods based on the three standard subsoil models. The subsoil 

models for analyzing beam foundations (standard models) available in GEO Tools are: 

  

A Simple assumption model 

B Winkler's model 

C Continuum model 

 

Simple assumption model does not consider the interaction between the beam foundation and the soil. 

The model assumes a linear distribution of contact pressures beneath the foundation. Winkler's model 

is the oldest and simplest one that considers the interaction between the beam foundation and the soil. 

The model represents the soil as elastic springs. Continuum model is the complicated one. The model 

considers also the interaction between the beam foundation and soil. It represents the soil as a layered 

continuum medium.  

 

The three standard soil models are described through five different numerical calculation methods. 

The methods graduate from the simplest one to more complicated one covering the analysis of most 

common beam foundation problems that may be found in the practice. 

 

According to the three standard soil models (simple assumption model - Winkler's model - Continuum 

model), five numerical calculation methods are considered to analyze the beam foundation as follows: 

 

1  Linear Contact Pressure 

            (Simple assumption model) 

 

2  Elastic Beam Foundation using Modulus of Subgrade Reaction by Kany/ El Gendy (1995) 

(Winkler's model) 

 

3  Elastic Beam Foundation using Modulus of Compressibility by Kany (1974) 

(Continuum model) 

 

4  Rigid Beam Foundation using Modulus of Compressibility by Kany (1972) 

(Continuum model) 

 

5  Flexible Beam Foundation using Modulus of Compressibility  

(Continuum model) 

 



GEO Tools 

 

 

 

 

 

-10.7- 

It is also possible to consider irregular soil layers and the thickness of the base beam that varies in 

each element. Furthermore, the influence of temperature changes and additional settlement on the 

beam foundation can be taken into account.  

10.2.2 Definition 

In the analysis, the beam foundation is divided into equal elements according to Figure 10.1. Using 

the available five calculation methods, the settlement and the contact pressure can be determined in 

each element. 

 

 
Figure 10.1 Loads, beam thickness und beam foundation with element division 
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10.3 Linear contact pressure method 

This method is the simplest one for determining of the contact pressure distribution under the beam 

foundation. In the method, it is assumed that the contact pressures are distributed linearly on the 

bottom of the beam foundations (statically determined) as shown in Figure 10.2. In which the resultant 

of soil reactions coincides with the resultant of applied loads. Based on Navier’s solution, the contact 

pressure qi at any point i from the geometry centroid of the beam foundation with N and My is given 

by   

i

y

y

f

i x
I

M

A

N
q  +=                                                            (10.1) 

while for a beam foundation without moment My = 0 or without eccentricity about y-axis, the contact 

pressure qi will be uniform under the beam foundation and is given by 

f

i
A

N
q =                                                                  (10.2) 

where 

N  Sum of all vertical applied loads on the foundation [kN] 

xi  Coordinate of node i from the centroidal axis x [m] 

qi  Contact pressure at node i [kN/m2] 

Af  Foundation area [m²] 

My=N.ex  Moment due to N about the y-axis [kN.m] 

Iy  Moment of inertia of the foundation about the y-axis [m4] 

 

After determining the contact pressure under the beam foundation, the internal forces at the different 

points of the beam can be calculated. 

 

The assumption of this method is that there is no compatibility between the beam foundation 

deflection and the soil settlement. 

 

 
Figure 10.2 Linear contact pressure distribution 
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10.4 Elastic Beam Foundation by Kany/ El Gendy (1995) 

The oldest method for the analysis of beam on elastic foundation is the modulus of subgrade reaction, 

which was proposed by Winkler (1867). The assumption of this method is that the soil model is 

represented by an infinite number of isolated elastic springs. The deflection si of the soil medium at any 

point i on the surface is directly proportional to the soil pressure qi at that point and independent of soil 

pressures at other locations (Figure 10.3 and Eq. 10.3). 

iii skq  =                                                           (10.3) 

where 

si Settlement in element i [m] 

qi Contact pressure at element i [kN/m2] 

ki  modulus of subgrade reaction at element i [kN/m3] 

 

It should be noticed that ki is the modulus of subgrade reaction at element i. It may be constant for the 

whole foundation area or variable from an element to another. 

 

 

Consider the beam foundation in Figure 10.3. It is necessary to analyze the beam foundation using the 

method:  

 

Elastic Beam Foundation using Modulus of Subgrade Reaction by Kany/ El Gendy (1995). 

 

Assume that the contact pressure distribution is represented by a series of uniform blocks of contact 

pressures qn. These values of qn are the unknowns of the problem.  

10.4.1 Settlement si 

The surface settlement si at the center of the element i can be written as: 
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Figure 10.3 Elastic Beam Foundation by Kany/ El Gendy (1995)  
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Equation (10.4) of the settlement at element i in general: 

 

k

q
=s

i

i
i                                                           (10.5) 

10.4.2 Moments Mi 

Using Clapeyron's three-moment equation, the deflection (settlement) si can be related to the moment 

Mi. For continuity of the elastic curve at the center of element i, it is required for elements 2 to n-1 
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In general: 
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a
M w+M v+M u=s-s +s-
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2
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1111                                             (10.7) 

where ui, vi and wi are stiffness influence coefficients and are given by 
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and Ii [m
4] is the moment of inertia for cross section element i and is given by 
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The moment Mi of external forces at the center of element i can be written as: 
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or in general: 

M - q j-iB aM=M i

(l)

j

i

j=

Rli )(
1

2

+                                                (10.9) 

where M i

(l)
 is the external moment due to external loads acting on the center of element i. 

10.4.3 Contact pressures qi for general case 

By eliminating si and Mi from Eqns. 10.5, 10.7 and 10.9, the following equation can be obtained: 
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where 
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Equation 10.10 can be applied at elements 2 to n-2, therefore two further equations are required to obtain 

the n unknown contact pressures q1 to qn. This can be done by considering the overall equilibrium of the 

vertical forces and moments of the beam foundation. 

 

 

 

 



GEO Tools 

 

 

 

 

 

-10.13- 

10.4.3.1 Equilibrium of the vertical forces: 

The resultant N due to external vertical forces acting on the beam must be equal to the sum of contact 

forces 
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                                            (10.12) 

10.4.3.2 Equilibrium of the moments about y-axis: 

Furthermore, the moments around the y-axis must be in equilibrium 
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Equation 10.10 to Eq. 10.13 can then be used to obtain the unknown soil contact pressures qn for any 

arbitrary external loading condition. 

 

Once the contact pressures qi are obtained at the various sections, then the internal forces in the beam 

can be calculated. 

10.4.4 Contact pressures qi for constants ki and Ii 

For constant ki =k, Ii =I,  =iiii =w,=v,=u  and 1  4  1 . Then Eq. 10.10 becomes 
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For i= 2 to i= n-2, Eq. 10.14 becomes:  
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10.4.5 Contact pressures qi for a symmetrical case 

For a symmetrical beam foundation with n=8 elements, the number of equations can be reduced to 4. 

Due to the symmetry q1=q8, q2= q7, q3= q6 and q4=q5. 

 

Equation 10.12 and Eq. 10.15 become: 
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In matrix form: 
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10.4.6 Determining modulus of subgrade reaction 

The modulus of subgrade reaction ki can be defined by the user or determined by the settlement 

calculation. These two options for defining the modulus of subgrade reaction are described in the next 

sections. 

10.4.6.1 Modulus k is calculated from soil layers 

In this case, variable modulus of subgrade reaction ki are calculated at different elements i. 

 

i) First, linear distribution of contact pressure q(o) on the bottom of the beam foundation is 

assumed as (Figure 10.4) 

x
I

M

A

N
q

y

y

f

o  )( +=                                                             (10.18) 

ii) For a set of n elements, the soil settlement si at element i due to contact pressure is obtained 

from the following formula according to Ohde (1942) 


=

=
n

j

jjii qcs
1

 ,                                                              (10.19) 

where ci, j is the flexibility coefficients of point i due to a unit loading on element j 

 

 

iii) From the calculated soil settlement si and contact pressure qi, the modulus of subgrade reaction 

for all elements ki is computed according to Figure 10.4, Winkler (1867) 

i

i
i

s

q
k =                                                             (10.20) 

iv) The mean modulus of subgrade reaction km for the whole beam is then given by 


=

=
n

i

ism k
n

k
1

 
1

                                                            (10.21) 

 where n is the number of elements 
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The further calculation is carried out using the Elastic Beam by Modulus of Subgrade Reaction after 

Kany/ El Gendy (1995). 

 

 
Figure 10.4 Calculation of modulus of subgrade reaction 

10.4.6.2 Modulus k is defined by the user 

The user can define the modulus of subgrade reaction k, which is constant or variable from element 

to element. 
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10.5 Elastic Beam Foundation by Kany (1974) 

Continuum model was first proposed by Ohde (1942), which based on the settlement occurs not only 

under the loaded area but also outside it. Otherwise, the settlement at any point is affected by loads 

at all the other elements. Using this concept, influence lines of the settlement due to loaded areas on 

the surface can be constructed as shown in Figure 10.5. 

 

From influence lines of the settlement of Figure 10.5, the settlement si at the center of the element i 

can be obtained from: 
















++++=

++++=

++++=

++++=

nnnnnn

n

n

n

sssss

ssscs

sssss

sssss

 ,3,2,1,

,33 ,32 ,31 ,33

,23 ,22 ,21 ,22

,13 ,12 ,11 ,11

...

... 

...

...

                                  (10.22) 

where si, j [m] is the settlement of point i due to a uniform load qj [kN/m3] on element j 

 

Since the settlement si, j can be obtained as a function of a uniform load qj on the surface, the settlement 

with a flexibility coefficient can be written as follows: 

 jjiji qcs  , , =                                                               (10.23) 

where ci,j [m
3/kN] is the flexibility coefficient of point i due to a uniform load qj at element j.  

 

Equation (10.18) can be rewritten with flexibility coefficients as:  
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                       (10.24) 

10.5.1 Settlements si 

Now, consider the beam foundation shown in Figure 10.6 is divided into equal elements, each of a 

length a. Assume that the contact pressure distribution can be approximated by a series of uniform 

blocks of contact pressures. These contact pressures qn are selected as the unknowns of the problem. 

 

For a beam of equal elements, the flexibility coefficients then becomes 0  ,  , ,  and ccccc iiiijji === . 
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Figure 10.5 Influence lines of the settlement  
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Therefore, the settlement si at the center of the element i can be written as: 
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In general: 

 q c +q c =s ji-j

n

+i=j

jj-i

i

=j

i 
11

                                                (10.26) 

10.5.2 Moments Mi 

Using Clapeyron's three-moment equation, the deflection of the beam (= settlement of the soil) si can be 

related to the moment Mi. For continuity of the elastic curve at the center of element i, it is required for 

elements 2 to n-1 
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In general: 
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Figure 10.6 Elastic Beam Foundation by Kany 1974 
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where ui, vi and wi are stiffness influence coefficients and are given by 
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and Ii [m
4] is the moment of inertia for cross section element i and is given by 
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3
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The moment Mi of external forces at the center of element i can be written as: 
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In general: 

M - q j-iB aM=M i

(l)

j

i

=j

Rli )(
1

2

+                                                  (10.30) 

where M i

(l)
 is the external moment due to external loads acting on the center of element i. 

10.5.3 Contact pressures qi for a general case 

By eliminating si and Mi from Equations (10.26), (10.28) and (10.30), the following equation for i= 2 

to i= n-2 can be obtained: 
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The constant Ci is related to ci where 
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Equation 10.31 can be applied at elements 2 to n-2, therefore two further equations are required to obtain 

the n unknown contact pressures q1 to qn. This can be done by considering the overall equilibrium of the 

vertical forces and moments of the beam foundation. 

10.5.3.1 Equilibrium of the vertical forces: 

The resultant N due to external vertical forces acting on the raft must be equal to the sum of contact 

forces 
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10.5.3.2 Equilibrium of the moments about y-axis: 

Furthermore, the moments around the y-axis must be in equilibrium 
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Equation 10.31 to Eq. 10.34 can then be used to obtain the unknown soil contact pressures qn for any 

arbitrary external loading condition. Settlements of the soil under the beam foundation can be obtained 

by substituting the calculated contact pressures in Eq. 10.26. 

 

Once the contact pressures qi are obtained at the various sections, then the internal forces in the beam 

can be calculated. 
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10.5.4 Contact pressures qi for constant Ii 

For constant Ii =I,  =iiii =w,=v,=u  and 1  4  1 . Then Eq. 10.31 becomes 
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For i= 2 to i= n-2, Eq. 10.35 becomes:  
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10.5.5 Contact pressures qi for symmetrical case 

For a symmetrical beam foundation with n=8 elements, the number of equations can be reduced to 4. 

Due to the symmetry q1=q8, q2= q7, q3= q6 and q4=q5. 

 

Equation 10.33 and Eq. 10.36 becomes: 
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In matrix form: 
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10.6 Rigid beam foundation by Kany (1972) 

In the case of rigid beam foundations, it is assumed that the beam is so thick that no significant 

deformations of the beam occur. 

 

In many practical cases, it is convenient to treat the beam as being infinitely rigid, where two 

conclusions can be drawn concerning beam settlement: 

 

1. If there are no moments M = 0 caused by load eccentricity, all points on the beam will go 

down the same amount so. 

2. If there are moments M ≠ 0, the beam will rotate as a rigid body and there will be differential 

vertical movement between points on the beam, but all points will remain in the same plane. 

10.6.1 Case of an eccentric load (ex ≠ 0) 

For a beam with an eccentric load about y-axis (Figure 10.7), the unknowns of the problem are n 

contact pressures qi, the uniform rigid body translation so and the rotation α about y-axis.  

10.6.1.1 Soil settlements 

To formulate the stiffness matrix for analyzing the rigid beam foundation on a layered soil medium 

(isotropic elastic half-space soil medium may be also applied), consider a set of n elements of the 

beam as shown in Figure 10.7. According to Kany (1972), the contact pressure at rigid beam-subsoil 

interface can be approximated by a series of blocks of uniform stress intensity. The settlement si at a 

soil element i due to contact pressures on n elements is given by 
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In general: 

 q c +q c =s ji-j

n

+ij=

jj-i

i

j=

i 
11

                                                (10.40) 

 

where ci-j is the flexibility coefficient of an element i due to a unit load qj at element j, [m3/kN]. 

 

Considering the entire beam foundation, Eq. 10.40 is rewritten in matrix form as: 

 

    qcs  =                                                           (10.41) 

where 

{s} Vector of settlements 

[c] Flexibility matrix 

{q} Vector of contact pressures 
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Figure 10.7 Rigid Beam Foundation by Kany 1972 (case of an eccentric load) 
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Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [ks] corresponding to the 

contact pressures at the n elements such that 

 

    skq s  =                                                         (10.42) 

where [k]=[c]-1 is the soil stiffness matrix. 

10.6.1.2 Rigid body translation so and rotations α  

Due to the beam rigidity, the following linear relation expresses the settlement si at the center of 

element i that has a distance xi from the geometry centroid: 

   x + s = s ioi αtan                                                       (10.43) 

Equation 10.43 is rewritten in matrix form for the entire beam foundation as 
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Equation 10.44 is simplified to 

 

      X =s
T
                                                          (10.45) 

where 

{Δ} Vector of the beam deformation from so, tan α 

[X]T Geometric matrix of the beam with coordinate x 

 

Substituting Eq. 10.45 into Eq. 10.42 gives 

      Δ  
T

s Xkq =                                                      (10.46) 

Equation 10.46 is a matrix of n equations with n+2 unknowns, namely the contact pressures q1 to qn, the 

uniform rigid body translation so and the rotation α about y-axis. Therefore, two further equations are 

required. This can be done by considering the overall equilibrium of the vertical forces and moments of 

the beam foundation. 
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10.6.1.3 Equilibrium of the vertical forces: 

The resultant N due to external vertical forces acting on the raft must be equal to the sum of contact 

forces  
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10.6.1.4 Equilibrium of the moments about y-axis: 

Furthermore, the moment M=N.ex due to resultant N about the y-axis must be 

equal to the sum of moments due to contact forces about that axis 
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Equations 10.47 and 10.48 are rewritten for the entire beam foundation in matrix form as 
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Equation 10.49 is simplified to 

 

    qX = N                                                             (10.50) 

where 

{N} Vector of the resulting forces and moments on the beam 

{q}  Vector of contact pressures 

[X] Geometric matrix of the beam with coordinate x 

 

Substituting Eq. 10.46 into Eq. 10.50 gives the following linear system of equations 

       Δ   
T

s XkXN =                                                         (10.51) 
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Solving the system of linear equations Eq. 10.45, gives so and tan α. Substituting the so and tan α in 

Eq. 10.46 to find the n unknown contact pressures. Then, substituting also the so and tan α in Eq. 

10.45 to find the n settlements. 

10.6.2 Case of a uniform settlement (ex = 0) 

For a beam with a centric load (Figure 10.8), the settlement will be uniform (si = so) and the beam 

will not rotate (α = 0). Therefore, the unknowns of the problem are reduced to n contact pressures qi 

and the rigid body translation so. The derivation of the uniform settlement for the rigid beam can be 

carried out by equating the settlement si by a uniform translation so at all elements on the beam. 

 

In case of a beam with a centric load, Eq. 10.52 may be written as: 

    os skq  =                                                             (10.52) 

where so is the uniform settlement of the soil at all elements under the beam. 

 

Expanding Eq. 10.52 for all elements and equating all settlements by uniform rigid body translation 

so, yields to the contact forces as a function in terms ki, j of the matrix [k] as follows: 
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Carrying out the summation of all contact pressures in Eq. 10.53, leads to: 
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                                                      (10.54) 

Replacing the sum of all contact pressures in Eq. 10.54 by the resultant N/aB, gives rigid body 

translation so, which equals to the settlement si at all nodes, is obtained from: 
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Substituting the uniform rigid body translation so into Eq. 10.53, gives the n unknown contact 

pressures qk by 
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It should be noticed that Eq. 10.55 is analogous to Eq. 10.3 for Winkler’s model.  

oso skq =                                                                  (10.57) 

where aBNqkk o
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Therefore, the summation of terms ki,j may be used to determine the modulus of subgrade reaction ks.  
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Figure 10.8 Rigid Beam Foundation by Kany 1972 (case of a uniform settlement) 

10.7 Flexible beam foundation 

In addition to the possibility for analyzing elastic and rigid beams by GEO Tools, the algorithm 

described before can be also used to calculate the settlement of a flexible beam foundation. The 

contact pressure and the settlements due to loads (uniform loads and concentrated loads) on the base 
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area can be determined using the soil properties. In this case, the stiffness of the beam is not taken 

into account. 

 

If the beam foundation is perfectly flexible (such as a strip of an embankment), the contact pressures 

will be equal to the applied distributed loads on the beam foundation, Figure 10.9.  

 

For the set of grid points of the beam foundation, the soil settlements are 
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In general: 

 q c +q c =s ji-j

n

+ij=

jj-i

i

j=

i 
11

                                                (10.59) 

 

where ci-j is the flexibility coefficient of an element i due to a unit load qj at element j, [m3/kN]. 

 

Considering the entire beam foundation, Eq. 10.58 is rewritten in matrix form as: 

    qcs  =                                                           (10.60) 

where 

{s} Vector of settlements 

{q} Vector of contact pressures (applied distributed loads) 

[c] Flexibility matrix 
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Figure 10.9 Flexible Beam Foundation 
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10.8 Beam foundation rigidity 

The rigidity of the beam foundation depends on the ratio between the rigidity of the beam and the 

soil. Based on great number of comparative computations for Continuum model and Winkler’s model, 

Graßhoff (1987) proposed various degrees of system rigidity between foundation and the soil until 

case of practical rigidity. 

 

The system rigidity Kst for Continuum model is expressed by 
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                                                          (10.61) 

while the system rigidity Kb for Winkler’s model is expressed by 
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                                                          (10.62) 

where 

Eb   Modulus of Elasticity of the beam material [kN/m2] 

Es  Modulus of Compressibility of the soil [kN/m2] 

k  Modulus of Subgrade Reaction of the soil [kN/m3] 

d  Foundation thickness [m] 

l  Foundation length [m].  

 

In which for modulus of Continuum model, Kst = 1 indicates rigid foundation and Kst = 0.01 indicates 

flexible foundation, while for Winkler’s model, Kb = 0.2 indicates rigid foundation and Kb= 0.002 

indicates flexible foundation. 
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10.9 Influences on results 

10.9.1 Influence of external foundations 

In many practical cases, it becomes important to assess the behavior of a foundation due to its interaction 

with another structural foundation or additional external loading. In this case, the settlement si of the 

beam in element i is replaced by sio+si.A, where si.A is the additional settlement due to external foundation.  

 

Due to the external foundation, the settlement si at the center of element i can be expressed by  

Aiioi sss .+=                                                           (10.63) 

where 

sio Settlement at the center of element i due to the load acting upon the foundation [m] 

si.A Additional settlement at the center of element i due to the external foundation [m] 

 

Due to the influences of external settlements, the right hand side Ri of Eqns 10.11 and 10.32 becomes: 

( ) s+s-s+
IE

a
Mw+Mv+Mu=R .A+ii.A.A-i

i

(l)
+ii

(l)
ii

(l)
-iii 11

2

11
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                         (10.64) 

 
Figure 10.10 Beam foundation under application with external foundation 
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10.9.2 Influence of temperature change 

Sometimes, a temperature difference ΔT occurs between the upper and lower surface of the beam 

foundation. An example for this case is when a fire oven or boiler is constructed directly on the beam 

foundation in an industry structure. In this case, the settlement si of the beam at the center of element i is 

replaced by sio+si.A + Δi, where Δi is the deformation due to temperature change.  

 

Due to the temperature change, the settlement si at the center of element i can be expressed by 

 sss iAiioi ++= .
                                                       (10.65) 

By assuming the warped surface as part of a cylinder, it can be proven from geometry, Figure 10.11, 

that: 

d

rT..
 = 

iT
i

2

α 2
                                                           (10.66) 

where 

Δi Amount of curvature at element i [m]  

αT Coefficient of thermal expansion of concrete = 5×10-6 [1/oc] 

ri Distance  from element i to the center of the beam where curling is zero [m] 

d Thickness of the beam [m] 

ΔT Temperature differential between the upper and lower surface of beam [oc],  T- T = T uo   

To  Temperature at the upper surface of the beam [oc] 

Tu Temperature at the lower surface of the beam [oc]. 

 

Positive deflection when the beam warps down with a temperature at the top bigger than that at the 

bottom. 

 

Due to the temperature change, the right hand side Ri of Eqns 10.11 and 10.32 becomes: 
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Figure 10.11 Influence of temperature change on the beam 
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10.9.3 Influence of groundwater pressure 

If the water table is located above the beam foundation, the beam foundation will be exposed to an 

additional negative pressure qw due to the effect of groundwater. This can be taken into account in 

the settlement calculation. In this case, an additional negative uniform load - qw on the base beam 

foundation is added to the applied uniform load on the beam. 

 

Figure 10.12 shows an example for a beam subjected to a uniformly distributed loading pf equal to 

the weight of the beam itself minus the uplift: 

 

Own weight of the raft  wo = γb×d  

Up lift pressure   qw = γw×(Tf-Tw)  

Total     pf = wo - qw 

 

where 

d  Thickness of beam [m]  

Tw  Groundwater depth under the ground surface [m] 

Tf  Foundation depth under the ground surface [m] 

γb  Unit weight of the beam material [kN/ m3] 

γw  Unit weight of the water [kN/ m3]. 
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Figure 10.12 Influence of groundwater pressure on the beam 
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10.10   Formulation of flexibility coefficients  

First, n settlements si due to average soil pressure qo are calculated using the defined system of loading 

and subsoil data. In which, n is number of elements of the beam. Then from settlements si, flexibility 

coefficients ci are calculated for n elements, Eq. 10.67. 

qo

s
=c i

i
                                                                   (10.68) 

Finally, settlement differences Ci are calculated from ci, Eq. 10.68. The settlement differences are 

used as input data for setting up the linear system of equations. 

11 2 +− +− iiii ccc=C                                                       (10.69) 

When calculating the settlements si, the characteristic point Pk is used. According to Figure 10.13, it 

is at the intersection of the straight line parallel to the y-axis in the section 0.74×a/2 from the middle 

of the element or parallel to the x-axis is at a distance of 0.74×b/2. Characteristic point is a point at a 

rectangular loaded area, in which the flexible settlement is identical with the rigid displacement.  

 

 
Figure 10.13 Element division and numbering of elements in the settlement calculation 
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In GEO Tools, the calculated settlements si, flexibility coefficients ci and settlement differences Ci 

are displayed on the screen and can be printed in tables to check the results. This makes it possible to 

compare the calculation results with the table values after Kany (1974). 

 

The following sections describe the settlement calculation. 
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10.11   Settlement calculation 

10.11.1 Introduction 

Soil medium may be considered as an isotropic elastic half-space soil medium or a layered continuum 

soil medium. The settlement equations of both mediums are presented in the next sections. The first 

one is used when a simplification for analyzing beam on elastic foundation is required. Representing 

the soil as a layered continuum medium is more complicated than that as an isotropic elastic half-

space soil medium. Kany (1954) presented an extension of Ohde’s method (1942) to beam foundation 

resting on nonhomogeneous and anisotropic soil medium. It can be applied for more accurate analysis 

of beam on elastic foundation. 

10.11.2 Settlement due to a concentrated load on half-space medium 

The settlement si [m] at the surface outside the point of application of the concentrated load Qj [kN] 

at a point j on an isotropic elastic half-space soil medium is given by, (Figure 10.14): 

( )
ij

sj

i
 E r

  Q
 = s

π

ν1 2−
                                                        (10.70) 

si  Settlement under point i due to a concentrated load at point j [m] 

Qj  Concentrated load at point j at the surface [kN] 

rij  Radial distance between points i and j [m] 

E Young's modulus of the soil [kN/m2] 

νs Poission's ratio of the soil [-]. 

 

Figure 10.14 Settlement due to a concentrated load on an isotropic elastic half-space soil medium 

10.11.3 Settlement due to a circular loaded area on half-space medium 

The settlement so [m] at the surface under the center of a circular loaded area of a radius r [m] and 

intensity q [kN/m2] on an isotropic elastic half-space soil medium is given by (Figure 10.15): 
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Figure 10.15 Settlement due to a circular loaded area on an isotropic elastic half-space soil medium 

10.11.4 Settlement at a depth z due to a loaded area 

According to Steinbrenner (1934), the settlement s(z) at a depth z under the corner of the loaded area 

a×b and intensity q [kN/m2] on an isotropic elastic half-space soil medium is given by (Figure 10.16): 
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Figure 10.16 Settlement s(z) under the corner of a loaded area on elastic half-space medium 
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10.11.5 Settlement at the surface due to a loaded area 

The settlement s(0) of a point at the surface under the corner of a rectangular loaded area on an 

isotropic elastic half-space soil medium is obtained by putting z = 0 in Eq. 10.72 
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where in Eq. 10.72 and 10.73 is 22222    and   bamzbac +=++=  

10.11.6 Settlement of a finite layer due to a loaded area 

For the settlement Eqns 10.72 and 10.73 presented above, it was assumed that the soil layer extends 

to an infinite depth. However, if a rigid base at a depth z = h underlies the soil layer, the settlement sh 

of the layer can be approximately calculated as (Figure 10.17): 

)()0( zsssh −=                                                            (10.74) 

 
 

Figure 10.17 a) Isotropic elastic half-space soil medium 
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Subtracting Eq. 10.72 from Eq. 1.73 yields 
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Equation 10.75 can be simplified to 

f
E

q
sh =                                                             (10.76) 

10.11.7 Settlement of multi-layers due to a loaded area  

Obviously, it can generalize this approach to consider multi-layers of soil. Each has different elastic 

material and thickness as shown in Figure 10.18. The vertical settlement of a layer l in an n-layered 

system is given by 
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Figure 10.18 Layered system 
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The total settlement for n-layered system is 
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Considering Poisson’s ratio vs for all soil layers is constant as its value for most soil types ranges 

between 0.3 and 0.5. 

10.11.8 Settlement at an interior point of loaded area 

So far, it has been considered the settlement beneath a corner of a loaded area. To find the settlement 

at any other point, the principle of superposition can be used. The settlement at an interior point of 

the rectangular loaded area is given by the sum of the settlements at the corners of four sub-loaded 

areas. To determine the settlement coefficient f(l) for a layer l at an interior point i of the rectangular 

loaded area shown in Figure 10.19, the Formula of Kany (1974) can be applied as 
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where 
22222

   und   nnlnnn baMzbac +=++=  

 

The value zl means the level of the lower side of the layer l from the foundation level. 

 

 
 

Figure 10.19 Superposition of four loaded areas to find the settlement at an interior point i 
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10.11.9 Settlement at a point outside the loaded area 

Adding and subtracting corner settlements for four loaded areas can obtain the settlement of any point 

outside the loaded area as shown in Figure 10.20. First, the settlement s1 as if the entire region defined 

by load q is determined. Then, the settlements due to the two edge loaded areas s2 and s3 are 

subtracted. Finally, the settlement s4 is added since it has been subtracted twice in s2 and s3. Using 

the same process, the settlement coefficient f(l) for a layer l at an exterior point i of the rectangular 

loaded area shown in Figure 10.20 is given by 

4
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)()( lllll fffff −−−=                                                       (10.80) 

 

 
 

Figure 10.20 Superposition of four loaded areas to find the settlement at an exterior point i 
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10.12  Determination of limit depth 

The assumption of the isotropic elastic half-space soil medium requires an infinite soil layer having 

the same compressibility under the foundation. Practically, the soil consists of many layers with 

different soil materials. For layered soil medium, the number of layers in a boring to be considered 

when determining the settlement depends on the level of the rigid surface or on the limit depth zg 

where no settlement occurs. The limit depth zg under the foundations is the level of which the stress 

σU reaches a standard ratio ξ of the initial vertical stress σV as indicated in Figure 10.21 and the 

following equation 

VU σ  ζσ =                                                               (10.81) 

where 

σU = σE + σD Stress due to the foundation load and the external foundation loads [kN/m2] 

σE  Stress due to the foundation load [kN/m2] 

σD  Stress due to the external foundation loads [kN/m2] 

σV  = Σγz Stress due to the self-weight of the soil layers [kN/m2] 

γ  Unit weight of the soil layer [kN/m3] 

z  Depth of the soil layer [m]. 

 

An examination from Amman/ Breth (1972) showed that the values ξ may be taken as ξ = 0.8, 

especially for reloading soil. The standard value of ξ according to DIN 4019 is ξ = 0.2. 

 

 
 

 

Figure 10.21 Limit depth zg under a foundation 
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10.13   Bilinear soil behavior 

10.13.1 General 

The yielding of the subsoil is described by the modulus of compressibility (or modulus of elasticity), 

which can be determined from the stress settlement curve. A simplified way was supposed to improve 

the deformation behavior of the soil by dividing the stress settlement curve into two regions, Figure 

10.22.  

 

• In the first region, the ground will settle until reaching an overburden load qv according to the 

modulus of compressibility Ws.  

 

• In the second region after reaching the load qv the ground will settle more under load q 

according to the modulus of compressibility Es until reaching the total load qo. 

 

 

 
Figure 10.22 Load settlement diagram (bilinear relation) 

At first, it should be carried out a primary calculation by one of the following two cases: 

 

Case 1: qv<qo 

The settlement si of the beam foundation at the center of element i can be derived from two variations 
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iEiWi sss   +=                                                               (10.82) 
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sEi Settlement at the center of element i due to load from qv to qo with modulus of compressibility 

Es (part of primary loading) [m]. 

 

It can be generally said that the total contact pressure on the beam foundation is given by 

qequqo +=                                                               (10.83) 

where qu=qv is the overburden pressure [kN/m2] 

 

Case 2: qv>qo  

The settlement equation will be 

iWi ss  =                                                                (10.84) 

In this case, the contact pressure on the beam foundation is qo, where qo< qv 

 

If one of the above two cases is not existent, an iterative solution for the settlement equation will be 

necessary. 

 

The bilinear relation of the soil deformation may be taken into consideration as follows: 
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10.13.2 Bilinear soil behavior for elastic beam foundation (Kany/ El Gendy 1995) 

First, n settlements sEi due to loading part qe and n settlements sWi due to reloading part qu are 

calculated using the defined system of loading and subsoil data. In which, n is number of elements of 

the beam. Then from settlements sEi and sWi, flexibility coefficients cei and cwi are calculated for n 

elements, Eq. 10.85.  

qu

s
=cw

qe

s
=ce

Wi
i

Ei
i

                                                                  (10.85) 

For element i, the summation equations of the settlements are given by 

qe ce +qe ce  =s

qu cw +qu cw  =s

ij

n

+ij=

ji

i
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11

11
                                                 (10.86) 

where 

qv  Overburden pressure [kN/m2] 

qu= qv  Reloading contact pressure [kN/m2] 

qe  Loading contact pressure [kN/m2] 

qo=qv+qe Average soil pressure [kN/m2]. 

 

The mean modulus of subgrade reaction km for the whole beam is then given by 
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10.13.3 Bilinear soil behavior for elastic beam foundation (Kany 1974) 

First, n settlements sEi due to loading part and n settlements sWi due to reloading part are calculated 

from the defined profile and all layers below the foundation base using the defined system of loading 

and subsoil data. In which, n is number of elements of the beam. Then from settlements sEi and sWi, 

flexibility coefficients cei and cwi are calculated for n elements, Eq. 10.85.  

qu

s
=cw

qe

s
=ce

Wi
i

Ei
i

                                                               (10.88) 

The loading contact pressure qe is given by 

qwqvqo=qe −−                                                         (10.89) 

where 

qv  Overburden pressure [kN/m2] 

qu= qv  Reloading contact pressure [kN/m2] 

qe  Loading contact pressure [kN/m2] 

qw  Groundwater pressure [kN/m2] 

qo  Average soil pressure [kN/m2]. 

 

Finally, settlement differences Cei and Cwi are calculated from cei and cwi values, Eq. 10.90. The 

settlement differences are used as input data for setting up the linear system of equations. 

11

11

2

2

+−

+−

+−
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iiii

iiii

cwcwcw=Cw

cecece=Ce
                                                  (10.90) 

In GEO Tools, the calculated settlements sEi and sWi, flexibility coefficients cei and cwi and settlement 

differences Cei and Cwi are displayed on the screen and can be printed in tables to check the results. 

This makes it possible to compare the calculation results with the table values after Kany (1974).  

10.13.3.1 Settlements si 

The settlement si at the center of the element i for linear behavior is given by 

q c +q c =s ji-j

n

+ij=

jj-i

i

j=

i 
11

                                                    (10.91) 

For bilinear behavior 
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                         (10.92) 

10.13.3.2 Moments Mi 

Clapeyron's three-moment equation for linear behavior is given by 

( )
I E 

a
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1111                                           (10.93) 

For bilinear behavior 
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The moment Mi of external forces at the center of element i for linear behavior is given by 

M - q j-iB aM=M i

(l)
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For bilinear behavior: 
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                              (10.96) 

10.13.3.3 Contact pressures qi for general case 

By eliminating si and Mi from Equations (10.92), (10.94) and (10.96), the following equation for i= 2 

to i= n-2 can be obtained: 
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or 
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where 
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The constants Cei and Cwi are related to cei and cwi respectively, where 

 

( ) 12323212210101 2 ,...2    ,2    ,2 −−−− +−+−+−− nnnno cecece=Cececece=Cececece=Cecece=Ce  

( ) 12323212210101 2 ,...2    ,2    ,2 −−−− +−+−+−− nnnno cecwcw=Cwcwcwcw=Cwcwcwcw=Cwcwcw=Cw  

Equation 10.98 can be applied at elements 2 to n-2, therefore two further equations are required to obtain 

the n unknown contact pressures qe1 to qen. This can be done by considering the overall equilibrium of 

the vertical forces and moments of the beam foundation. 

10.13.3.4 Equilibrium of the vertical forces: 

The resultant N due to external vertical forces acting on the raft must be equal to the sum of contact 

forces 
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10.13.3.5 Equilibrium of the moments about y-axis: 

Furthermore, the moments around the y-axis must be in equilibrium 
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Equation 10.98 to Eq. 10.101 can then be used to obtain the unknown soil contact pressures qen for any 

arbitrary external loading condition. Settlements of the soil under the beam foundation can be obtained 

by substituting the calculated contact pressures in Eq. 10.92. Once the contact pressures qei are obtained 

at the various sections, then the internal forces in the beam can be calculated. 
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10.13.4 Bilinear soil behavior for rigid beam foundation (Kany 1972) 

For every element i, the summation equations of the settlements si are first set up with the initially 

unknown contact pressure qi 


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n
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ki

n

k

kkii squcwqeces .

1

 ,

1

 ,                                              (10.102) 

where 

cei, k Flexibility coefficient of element i due to a unit loading contact pressure qek = 1  

 at the element k [m3/kN] 

cwi, k Flexibility coefficient of element i due to a unit reloading contact pressure qu = 1  

 at the element k [m3/kN] 

si  Settlement at element i [m] 

si.A  Additional settlement at element i [m] 

qek  Loading contact pressure on element k [kN/m2] 

qu  Reloading contact pressure [kN/m2]. 

 

Equation (10.102) in matrix form: 

         Auwee s+qC + qC = s                                                     (10.103) 

           Asuwses sk+qC k+ q = sk                                               (10.104) 

          Aswses sk+s k+ q = sk                                                   (10.105) 

                 qsk+s k+ q  q= sk
uAswsues −+                                    (10.106) 

       P+q  = sk ts
                                                           (10.107) 

       P  sk=q ts −                                                            (10.108) 

where 

{sA}  Vector of additional settlement 

{qe}      Vector of loading contact pressure 

{qu}      Vector of reloading contact pressure 

[Ce]   Flexibility coefficient matrix for loading part 

[Cw]   Flexibility coefficient matrix for reloading part 

[ks]= [Ce]
-1  Soil stiffness matrix for loading part 

Substituting Eq. 10.108 into Eq. 10.50, gives 

             P  skXqX = N ts −=                                                   (10.109) 

         PX skX= N ts −                                                          (10.110) 

         skXPX N st =+                                                       (10.111) 
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Substituting Eq. 10.45 into Eq. 10.111, gives 

           XkXPX N
T

st =+                                                       (10.112) 

      EV =                                                                (10.113) 

Solving the system of linear equations 10.113 to get so and tan α. Substituting these values in Equation 

10.45, gives n unknown soil settlements si. Then substituting the n soil settlements in Equation 

10.108, gives the n unknown contact pressures 
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10.14  Soil properties and parameters 

10.14.1 Introduction 

The elastic properties of the soil are defined in GEO Tools by the following two different parameters: 

1. Modulus of Compressibility Es (1/mv) 

2. Modulus of Elasticity E 

 

Es [kN/m2] is the reciprocal value of the coefficient of volume change mv [m
2/kN] 

 

For each soil layer, the input data maybe are 

 

Depth of the layer from the ground surface     z [m] 

Modulus of Compressibility for loading (constant in a layer t)  Es  [kN/m2] 

Modulus of Compressibility for reloading (constant in a layer) Ws [kN/m2] 

Modulus of Elasticity for loading (constant in a layer)   E  [kN/m2] 

Modulus of Elasticity for reloading (constant in a layer)  W [kN/m2] 

Unit weight of the soil      γs [kN/m3] 

Poisson's ratio of the soil       s [-]. 

 

The following sections describe these properties of the soil. Furthermore, the soil characteristics for 

different soil types are listed in tables, which may be used in the primary analysis. 
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10.14.2 Poisson’s ratio νs 

Poisson’s ratio νs for a soil is defined as the ratio of lateral strain to longitudinal strain. It can be 

evaluated from the Triaxial test. Poisson’s ratio νs can be determined from at-rest earth pressure 

coefficient Ko as follows 

o

o
s

K

K

+
=

1
ν                                                               (10.114) 

Some typical values for Poisson’s ratio are shown in Table 10.1 according to Bowles (1977). 

Poisson’s ratio in general ranges between 0 and 0.5. 

Table 10.1 Typical range of values for Poisson’s ratio νs according to Bowles (1977) 

 

Type of soil 
Poisson’s ratio 

νs [-] 

Clay, saturated  

Clay, unsaturated 

Sandy clay 

Silt 

Sand, dense 

Sand, coarse (void ratio = 0.4 - 0.7) 

Sand, fine grained (void ratio = 0.4 - 0.7) 

Rock 

0.4 - 0.5 

0.1 - 0.3 

0.2 - 0.3 

0.3 - 0.35 

0.2 - 0.4 

0.15 

0.25 

0.1 - 0.4 
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10.14.3 Moduli of compressibility Es and Ws 

The equations derived in the previous section for calculation of flexibility coefficients require either 

the moduli of compressibility for loading Es and reloading Ws or moduli of elasticity for loading E 

and reloading W for the soil. The yielding of the soil is described by these elastic moduli. The moduli 

of compressibility Es and Ws can be determined from the stress-strain curve through a confined 

compression test (for example Odometer test) as shown in Figure 10.23. In this case, the deformation 

will occur in the vertical direction only. Therefore, if the moduli of compressibility Es and Ws are 

determined from a confined compression test, Poisson’s ratio will be taken νs = 0.0. If the other moduli 

of elasticity E and W are used in the equations derived in the previous section, Poisson’s ratio will be 

taken to be νs  0. In general, Poisson’s ratio ranges in the limits 0 < νs < 0.5. 

 

 
 

Figure 10.23 Stress-strain diagram from confined compression test (Oedometer test) 

The modulus of compressibility Es [kN/m2] (or Ws [kN/m2]) is defined as the ratio of the increase in 

stress Δσ to decrease in strain Δε as (Figure 10.23) 
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where 

 Δσ´  Increase in stress from σv to σom   [kN/m2] 

 σv  Stress equal to overburden pressure   [kN/m2] 

 σom Stress equal to expected average stress on the soil [kN/m2] 

 Δε´  Decrease in strain due to stress from σv to σom [-] 

 Δσ´´  Increase in stress due to reloading   [kN/m2] 

 Δε´´  Decrease in strain due to reloading   [-]. 
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The moduli of compressibility may be expressed in terms of either void ratio or specimen thickness. 

For an increase in effective stress Δσ to decrease in void ratio Δe, the moduli of compressibility Es 

[kN/m2] and Ws [kN/m2] are then expressed as 
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where 

 m´v Coefficient of volume change for loading  [m2/kN] 

 m´´v Coefficient of volume change for reloading  [m2/kN] 

 e´o  Initial void ratio for loading    [-] 

 e´´o  Initial void ratio for reloading   [-] 

 Δe´ Decrease in void ratio due to loading  [-] 

 Δe´´  Decrease in void ratio due to reloading  [-]. 

 

The values of Es and Ws for a particular soil are not constant but depend on the stress range over 

which they are calculated. Therefore, for linear analysis it is recommended to determine the modulus 

of compressibility for loading Es at the stress range from σv to σom, while that for reloading Ws for a 

stress increment equal to the overburden pressure σv. On the other hand, since the modulus of 

compressibility increases with the depth of the soil, for more accurate analysis the modulus of 

compressibility may be taken increasing linearly with depth. Also, according to Kany (1976) the 

moduli of compressibility Es and Ws may be taken depending on the stress on soil. In these two cases, 

the moduli of compressibility Es and Ws can be defined in the analysis for several sub-layers instead 

of one layer of constants Es and Ws. 

 

As a rule, before the analysis the soil properties are defined through the tests of soil mechanics, 

particularly the moduli of compressibility Es and Ws. For precalculations Table 10.2 for specification 

of the modulus of compressibility Es can also be used. 

 

According to Kany (1974), the values of Ws range between 3 to 10 times of Es. From experience, the 

modulus of compressibility Ws for reloading can be taken 1.5 to 5 times as the modulus of 

compressibility Es for loading. 

 

For geologically strongly preloaded soil, the calculation is often carried out only with the modulus of 

compressibility for reloading Ws. In this case, the same values are defined for Es and Ws. 

 

Matching with the reality, satisfactory calculations of the settlements are to be expected only if the 

soil properties are determined exactly from the soil mechanical laboratory, field tests or back 

calculation of settlement measurements. 

 

Table 10.2 shows mean moduli of compressibility Es for various types of soil according to EAU 

(1990).  
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Table 10.2 Mean moduli of compressibility Es for various types of soil 

 

Type of soil 
Modulus of compressibility 

Es  [kN/m2] 

 
Non-cohesive soil 

Sand, loose, round 

Sand, loose, angular 

Sand, medium dense, round 

Sand, medium dense, angular 

Gravel without sand 

Coarse gravel, sharp edge 

   20000 -   50000 

   40000 -   80000 

   50000 - 100000 

   80000 - 150000 

 100000 - 200000 

 150000 - 300000 

 
Cohesive soil 

Clay, semi-firm 

Clay, stiff 

Clay, soft 

Boulder clay, solid 

Loam, semi-firm 

Loam, soft 

Silt 

 
 

     5000 -   10000 

     2500 -     5000 

     1000 -     2500 

   30000 - 100000 

     5000 -   20000 

     4000 -     8000 

     3000 -   10000 
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10.14.4 Moduli of elasticity E and W  

The equations derived in the previous section to determine the flexibility coefficients are used with 

moduli of elasticity E and W for unconfined lateral strain with Poisson’s ratio νs  0. It must be 

pointed out that, when defining Poisson’s ratio by νs = 0 (limit case), the moduli of compressibility 

Es and Ws for confined lateral strain (for example from Odometer test) also can be used. 

 

The modulus of elasticity is often determined from an unconfined Triaxial compression test, Figure 

10.24. Plate loading tests may also be used to determine the in situ modulus of elasticity of the soil 

as elastic and isotropic. 

 

 
Figure 10.24 Modulus of elasticity E from Triaxial test 

It is possible to obtain an expression for the moduli of elasticity E and W in terms of moduli of 

compressibility Es, Ws and Poisson’s ratio νs for the soil as 
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The above equation shows that: 

 

- In the limit case νs = 0 (deformation without lateral strain), the values of E and Es (also  W 

and Ws) are equal 

 

- In the other limit case νs = 0.5 (deformation with constant volume), the moduli of 

 elasticity will be E = 0 × Es and W = 0 × Ws. In this case, only the immediate settlement (lateral 

deformation with constant volume) can be determined. 
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Table 10.3 shows some typical values of modulus of elasticity according to Bowles (1977). 

Table 10.3 Typical range of moduli of elasticity E for selected soils 

 

Type of soil 
Modulus of elasticity 

E [kN/m2] 
 
Very soft clay 

Soft clay 

Medium clay 

Hard clay  

Sandy clay 

Silt 

Silty sand 

Loose sand 

Dense sand 

Dense sand and gravel 

Loose sand and gravel 

Shale 

 
3000 -       3000 

2000  -       4000 

4500 -       9000 

7000 -     20000 

          30000 -     42500 

2000  -     20000 

5000 -     20000 

          10000 -     25000 

          50000 -   100000 

          80000 -   200000 

          50000 -   140000 

        140000 - 1400000 
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10.14.5 Modulus of subgrade reaction ks 

It is important to say that the modulus of subgrade reaction ks is not a soil constant, but it can be 

related to the elastic parameters Es and νs of the soil.   

  

It may be determined from in situ plate loading test. This test is generally performed using a circular 

steel plate (30 in diameter) thick enough so that the bottom plate will settle uniformly under a vertical 

load. The modulus of subgrade reaction ks [kN/m3] is defined as the ratio between the soil pressure q 

[kN/m2] and corresponding settlement s [m] through the following equation 

s

q
k s =                                                                    (10.118) 

In practice, the plate would not stress the same soil strata as the full size foundation. Therefore, the 

result from a plate-loading test may give quite misleading results if the proposed foundation is large. 

The soft layer of soil in Figure 10.25 is unaffected by the plate loading test but would be considerably 

stressed by the foundation. Therefore, it is recommended to evaluate the modulus ks from the elastic 

parameters Es and νs of the soil. 

 

 

 
 

Figure 10.25 Illustration of how a plate loading test may give misleading results 

 

A reasonable approximation of modulus of subgrade reaction ks can be obtained from the allowable 

soil pressure qall according to Bowles (1977). This way is presented on the assumption that the 

allowable soil pressure is based on some maximum amount of settlement s, including a factor of 

safety FS. Accordingly, the modulus of subgrade reaction ks is given by 

s

q
SFk all

s   =                                                               (10.119) 

  Full size foundation 

Rigid base 

Bulb of pressure 
Firm soil 

Plate loading test 

Soft layer 
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As an example, the modulus of subgrade reaction ks [kN/m3] for a settlement of s = 0.0254 [m] and a 

factor of safety FS = 3 can be taken as 

all
all

s q
q

k  120
0254.0

 3 ==                                                     (10.120) 

In case of carrying out the analysis with constant modulus of subgrade reaction, it is recommended 

to determine the modulus of subgrade reaction from settlement calculation. More complicated 

analysis for irregular foundation on variable moduli of subgrade reactions is available in ELPLA. 

Furthermore, the moduli of subgrade reactions can be improved through the calculated contact 

pressures and settlements by iteration. 

 

The following Table 10.4 shows the approximate average values of ks according to Wölfer (1978). 

These values may be used only for primary calculation. 

Table 10.4 Typical average values of moduli of subgrade reactions ks for selected soils 

 

Type of soil Modulus of subgrade reaction 

ks [kN/m3] 
 

Peat 

Fill of sand and gravel 

Wet clayey soil 

Moistured clay 

Dry clay 

Hard dry clay 

Coarse sand 

Coarse sand + small amount of gravel 

Fine gravel + small amount of gravel 

Middle size gravel + fine sand 

Middle size gravel + coarse sand 

Large size gravel + coarse sand 

 
5000 - 10000 

10000 - 20000 

20000 - 30000 

40000 - 50000 

60000 - 80000 

100000 

80000 - 100000 

80000 - 100000 

80000 - 100000 

100000 - 120000 

120000 - 150000 

150000 - 200000 
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10.14.6 Allowable bearing capacity of the soil qall 

The value of allowable bearing capacity of the soil is based on theoretical as well as experimental 

investigation. Such a value usually includes a factor of safety of 3 (qult = 3 qall). This indicates that 

the design loads used in establishing the bearing capacity area of the foundation must be service loads 

with no reduction. 

 

Approximate allowable bearing capacity qall of common types of soils are listed in Table 10.5 

according to Bakhoum (1986) and can be taken for primary calculations. 

 

Table 10.5 Approximate allowable bearing capacity qult of common types of soils 

 

Type of soil 
Allowable bearing capacity 

qall  [kN/m2] 
 
Noncohesive soil 

Loose sand 

Medium sand 

Dense sand 

Hard rock 

 
 

100 

200 

500 

5000 

 
Cohesive soil 

Soft-medium clay 

Stiff clay 

Very stiff clay 

Hard clay 

 
 

90 

150 

300 

500 
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10.14.7 Settlement reduction factor α 

From experience the real consolidation settlements are different from those calculated. Settlements s 

are multiplied by a factor α according to German standard DIN 4019, page No. 1. According to this 

standard, the following reduction factors in Table 10.6 can be applied: 

 

Table 10.6 Reduction factors α according to DIN 4019, page No. 1 

 

Soil type  

Sand and silt 0.66 

Normally and slightly over consolidated clay 1.0 

Heavily over consolidated clay 0.5 - 1 

 

In GEO Tools, the moduli of compressibility Es and Ws are divided by α as follows 









=

=

α

α

s
s

s
s

W
W

E
E

                                                                 (10.121) 

In the final result, this process is equivalent to the following equation 

sS  α=                                                                    (10.122) 
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et du Mouvement des Solides elastiques. 

Gauthier-Villars, Paris 

 

[4] Bowles, J. (1977): Foundation analysis and design 

 McGraw-Hill, New York 

 

[5] DIN 4019, Blatt 1 (1974): Baugrund. Setzungsberechnungen bei lotrechter, mittiger Belastung 

Neufassung DIN V 4019-100 (1996). Mit Beiblatt 

Beuth-Verlag GmbH, Berlin 

 

[6] EAU (1990): Empfehlungen des Arbeitsausschusses Ufereinfassungen, Seite 10 

 Berlin/ München/ Düsseldorf 

 

[7] Graßhoff, H. (1966): Das steife Bauwerk auf nachgiebigem Untergrund. 

Verlag Wilhelm Ernst & Sohn, Berlin 

 

[8] Graßhoff, H. (1978): Einflußlinien für Flächengründungen. 

Verlag Wilhelm Ernst & Sohn, Berlin 

 

[9] Graßhoff, H. (1987): Systemsteifigkeit und Flächengründung 

Ber. Nr. 6, Lehrgebiet Grundbau, Bodenmechanik und Unterird. Bauen, Berg. Universität GH 

Wuppertal 

 

[10] Graßhoff, H./ Kany, M. (1992): Berechnung von Flächengründungen. 

Grundbautaschenbuch 3. Band, 4. Auflage 

Verlag Ernst & Sohn, Berlin 

 

[11] Kany, M. (1954): Beitrag zur Berechnung von Gründungskörpern auf nachgiebiger Unterlage 

Dissertation, Darmstadt 

 

[12] Kany, M. (1972): Einflüsse von Unregelmäßigkeiten im Baugrund und in der 

Flächengründung. 

Internationales Symposium Dresden 

 

[13] Kany, M. (1972): Berechnung von Systemen starrer Fundamentplatten mit 

beliebigem Grundriß auf ungleich geschichtetem Baugrund. 

Veröffentlichung LGA-Grundbauinstitut Heft 16 

 



GEO Tools 

 

 

 

 

 

-10.69- 

[14] Kany, M. (1974): Berechnung von Flächengründungen. 

2. Auflage, Verlag Ernst & Sohn, Berlin 

 

[15] Kany, M. (1976): Berechnung der Sohldrücke und Setzungen von Systemen starrer 

Sohlplatten nach dem Steifemodulverfahren von Kany 

Benutzerhandbuch für das Programm STAPLA 

Programmbibliothek des Grundbauinstitutes der LGA Bayern, Nürnberg 

 

[16] Kany, M./ El Gendy, M. (1995): Computing of beam and slab foundations on three 

dimensional layered model 

Proc. VIth Intern. Conf. on Computing in Civil and Building Engineering, Berlin 

 

[17]  Ohde, J. (1942), Die Berechnung der Sohldruckverteilung unter  Gründungskörpern 

Der Bauingenieur, Heft 14/16, S. 99 bis 107 – Heft, 17/18 S. 122 bis 127. 

 

[18] Steinbrenner, W. (1934): Tafeln zur Setzungsberechnung. 

Straße, S. 121-124 

 

[19] Winkler, E. (1867): Die Lehre von der Elastizität und Festigkeit. 

Dominicus, Prag 

 

[20] Wölfer, K.H. (1978): Elastisch gebettete Balken und Platten. 

Zylinderschalen. Bauverlag Wiesbaden/Berlin 

 

[21] Zimmermann, H. (1930): Die Berechnung des Eisenbahn-Oberbaus. 

2.Auflage. Verlag W. Ernst & Sohn, Berlin 

  


