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Analysis of Beam Foundations

Preface

Various problems in Geotechnical Engineering can be investigated by GEO Tools. M. Kany and (M.
@ A.) El Gendy developed the original version of GEO Tools in ELPLA package for analyzing elastic
foundation. After the death of Kany and (M. & A.) El Gendy further developed the program to meet
the needs of the practice.

This book describes the essential methods used in GEO Tools for analyzing beam on elastic
foundations. GEO Tools is a simple user interface program and needs little information to define a
problem.

There are three soil models with five methods available in GEO Tools for analyzing beam
foundations.

-10.4-



GEO Tools

10 Analysis of Beam Foundations after Kany and El Gendy

10.1 Introduction

Different calculation methods are known in the literature for the calculation of shallow foundations.
The early one is that assumes a uniform contact pressure distribution under shallow foundations. This
assumption is too far from the reality. Winkler (1867) and Zimmermann (1930) developed the
modulus of subgrade method. In the method, the subsoil is simulated by isolated springs. The
settlement of the spring is only dependent on the loading at the same point on the subsoil surface at
the spring location. This also applies to possible refinements with springs of different stiffness.

However, Boussinesq (1885) had already recognized that when the subsoil is loaded at one point, the
subsoil also settles outside the load point. Therefore, it does not behave like a spring. Because of this
finding, Ohde (1942) developed a calculation method for the first time, with which shallow
foundations can be analyzed, taking into account the soil structure interaction. This method, which is
called modulus of compressibility method, was later further developed by different authors (Gral3hoff
(1966-1978), Kany (1974), Gralhoff/Kany (1992)). GEO Tools is based on the modulus of
compressibility method after Kany (1974) and the modulus of subgrade reaction method after Kany/
El Gendy (1995). However, some refinements are included, some of which are new and have not yet
been dealt with in detail in the literature. It is therefore necessary to explain the calculation methods
in more detail than usual in order to be able to check the results and compare them with other results.
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10.2 Calculation methods
10.2.1 General

Beam foundations may be analyzed using classical subsoil models. Such as Winkler's model
according to Winkler (1867), Gral3hoff (1978) and Wélfer (1978) and Continuum model according to
Ohde (1942), GraBhoff (1978) and Kany (1974). In addition, cases of small and irregular beam
foundations can be analyzed by fewer extensive methods using tables and charts.

It is possible by GEO Tools to use the same data for analyzing beam foundations by five different
conventional and refined calculation methods based on the three standard subsoil models. The subsoil
models for analyzing beam foundations (standard models) available in GEO Tools are:

A Simple assumption model
B Winkler's model
C Continuum model

Simple assumption model does not consider the interaction between the beam foundation and the soil.
The model assumes a linear distribution of contact pressures beneath the foundation. Winkler's model
is the oldest and simplest one that considers the interaction between the beam foundation and the soil.
The model represents the soil as elastic springs. Continuum model is the complicated one. The model
considers also the interaction between the beam foundation and soil. It represents the soil as a layered
continuum medium.

The three standard soil models are described through five different numerical calculation methods.
The methods graduate from the simplest one to more complicated one covering the analysis of most
common beam foundation problems that may be found in the practice.

According to the three standard soil models (simple assumption model - Winkler's model - Continuum
model), five numerical calculation methods are considered to analyze the beam foundation as follows:

1 Linear Contact Pressure
(Simple assumption model)

2 Elastic Beam Foundation using Modulus of Subgrade Reaction by Kany/ EI Gendy (1995)
(Winkler's model)

3 Elastic Beam Foundation using Modulus of Compressibility by Kany (1974)
(Continuum model)

4 Rigid Beam Foundation using Modulus of Compressibility by Kany (1972)
(Continuum model)

5 Flexible Beam Foundation using Modulus of Compressibility
(Continuum model)
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It is also possible to consider irregular soil layers and the thickness of the base beam that varies in
each element. Furthermore, the influence of temperature changes and additional settlement on the
beam foundation can be taken into account.

10.2.2 Definition

In the analysis, the beam foundation is divided into equal elements according to Figure 10.1. Using
the available five calculation methods, the settlement and the contact pressure can be determined in
each element.

Concentrated load P, Uniform load p, P, GS
TYYVW
* TREREER
T
f i : + i . ¢ r
RN K
N

I Y

Edge moment

My, Beam thickness and loads Mg, (s

n1

W)
=
---I\J
w

>

A=nxa
Beam foundation with element division
Figure 10.1  Loads, beam thickness und beam foundation with element division
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10.3 Linear contact pressure method

This method is the simplest one for determining of the contact pressure distribution under the beam
foundation. In the method, it is assumed that the contact pressures are distributed linearly on the
bottom of the beam foundations (statically determined) as shown in Figure 10.2. In which the resultant
of soil reactions coincides with the resultant of applied loads. Based on Navier’s solution, the contact
pressure @i at any point i from the geometry centroid of the beam foundation with N and My is given

by

g =—+—2X (10.1)

while for a beam foundation without moment My = 0 or without eccentricity about y-axis, the contact
pressure @i will be uniform under the beam foundation and is given by

N

q A (10.2)
where
N Sum of all vertical applied loads on the foundation [KN]
Xi Coordinate of node i from the centroidal axis x [m]
Qi Contact pressure at node i [KN/m?]
At Foundation area [mZ]
My=N.ex Moment due to N about the y-axis [KN.m]
ly Moment of inertia of the foundation about the y-axis [m*]

After determining the contact pressure under the beam foundation, the internal forces at the different
points of the beam can be calculated.

The assumption of this method is that there is no compatibility between the beam foundation
deflection and the soil settlement.

GS

e e e e e
~

e s e g d

o s

o s e

e s s

q;

Figure 10.2  Linear contact pressure distribution
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10.4 Elastic Beam Foundation by Kany/ EI Gendy (1995)

The oldest method for the analysis of beam on elastic foundation is the modulus of subgrade reaction,
which was proposed by Winkler (1867). The assumption of this method is that the soil model is
represented by an infinite number of isolated elastic springs. The deflection s; of the soil medium at any
point i on the surface is directly proportional to the soil pressure g; at that point and independent of soil
pressures at other locations (Figure 10.3 and Eqg. 10.3).

a =k s (10.3)
where
Si Settlement in element i [m]
Qi Contact pressure at element i [KN/m?]
Ki modulus of subgrade reaction at element i [KN/m?®]

It should be noticed that ki is the modulus of subgrade reaction at element i. It may be constant for the
whole foundation area or variable from an element to another.

Consider the beam foundation in Figure 10.3. It is necessary to analyze the beam foundation using the
method:
Elastic Beam Foundation using Modulus of Subgrade Reaction by Kany/ El Gendy (1995).

Assume that the contact pressure distribution is represented by a series of uniform blocks of contact
pressures gn. These values of gy are the unknowns of the problem.

10.4.1 Settlement s;

The surface settlement s; at the center of the element i can be written as:

_ 0

g =1
1 kl
S P

5. = 2
2 k2
_ 0

5. =3
3 k3

(10.4)

_
Shn— —
Kn

-10.9-



Analysis of Beam Foundations
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Figure 10.3  Elastic Beam Foundation by Kany/ El Gendy (1995)
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Equation (10.4) of the settlement at element i in general:

q;
=1 (10.5)
> ki

10.4.2 Moments M

Using Clapeyron's three-moment equation, the deflection (settlement) si can be related to the moment
Mi. For continuity of the elastic curve at the center of element i, it is required for elements 2 to n-1

~51+25,-5= (U2 Mri+ V2 M2+ W2 M)

-8, +28;3-5~ (U3M2+Vi M s+ w; M4)

-s3+28,- 8= (U4|\/|3+V4|\/|4+W4|V|5)
6EI,

a2

6Elnl

= Sn-2 +2 Sn-1~ Sn— (Un—l M n-2 +Vn—1 M n—l+ Whn-1 M n)

(10.6)

In general:
2

6 E |;

-Siat 28~ Siv— (Ui MiatviMitwi M i+1) (10.7)

where ui, vi and w; are stiffness influence coefficients and are given by

2 li1
Vi:1 (L+14+ li j1
4 liq lisa

1 li
wi= |1+
2 ( |i+1)

and I; [m*] is the moment of inertia for cross section element i and is given by
_Bd?
12
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The moment M; of external forces at the center of element i can be written as:

M:=Mp+a Bg-M,"
Ms:=M RI+2a2 BQ1+3-2 BQz'Ms(I)

M4s=M g +3a°Bg,+2a?Bq,+a’ B, M "

(10.8)

Mn1=Mp+(N-1g,a? B+(n—2)g,a’ B+(N—3)q,a° B +...- M s

or in general:
Mi:MRI+aZBZ(i_j)qj_Mi(I) (10.9)
i=1

where M. is the external moment due to external loads acting on the center of element i.

10.4.3 Contact pressures g; for general case

By eliminating sj and M; from Eqns. 10.5, 10.7 and 10.9, the following equation can be obtained:

(oo (w1610t bl =

Kis1 ki 6 i1 =1
(10.10)
where
.= a4 B
[04] E | ,
a.2
R=UiMO%+viMO+wim®,,) (10.11)

6E I
Equation 10.10 can be applied at elements 2 to n-2, therefore two further equations are required to obtain

the n unknown contact pressures gz to gn. This can be done by considering the overall equilibrium of the
vertical forces and moments of the beam foundation.
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10.4.3.1 Equilibrium of the vertical forces:

The resultant N due to external vertical forces acting on the beam must be equal to the sum of contact
forces

V=0
(10.12)
aB(ql+q2+q3+...+qn) - 2P=0

10.4.3.2 Equilibrium of the moments about y-axis:
Furthermore, the moments around the y-axis must be in equilibrium

M =0

2n-1
o

— — 10.13
a’ B+wq a B+(2n—25)q3328+"'+%qnaz B-Mg+Mg, -EM @ =0 ( )

2

Equation 10.10 to Eq. 10.13 can then be used to obtain the unknown soil contact pressures g» for any
arbitrary external loading condition.

Once the contact pressures g are obtained at the various sections, then the internal forces in the beam
can be calculated.

10.4.4 Contact pressures gi for constants ki and I;

For constant ki =k, li=Il, u;=1, v;=4, w;=land ¢, = «. Then Eq. 10.10 becomes
1 2 1 2.
(_jqﬂl-(_-g)qi+(_+ajqi-1+a Z(I - J)qj =Ri (1014)
k k 6 k =

where

a2

6E I

Ri= (M (I)i-l+ 4 M (I)i +M (I)i+1)
For i= 2 to i=n-2, Eq. 10.14 becomes:
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1 2 1
(n _3)05% + (n _4)aq2 + "'+(E+aJQn-2 - [_ - gjqn—l+(_

10.4.5 Contact pressures gi for a symmetrical case

(10.15)

For a symmetrical beam foundation with n=8 elements, the number of equations can be reduced to 4.

Due to the symmetry g1=0s, q2= g7, q3= gs and g4=Qs.

Equation 10.12 and Eq. 10.15 become:

+++:E
9, +Q,+Q;+q, aB

ok
(1+ak)ql-[2-g)q2+q3= kR,

20k g, + (1+ak)q, -(2 -%qu3+ g, =kR,

3ak g, + 2ak q2+(1+ak)q3'(l'%kJQ4 =kR,.

In matrix form:

-10.14-
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(1 1 1 T
1+ ak) (za—kj 1 0 0, =P
° o IR
2
20k @+ok) - (2 - a_kj 1 q RN (10.17)
6 o] KR,
30k 20k (+ok) - (1- %) A kR,

10.4.6 Determining modulus of subgrade reaction

The modulus of subgrade reaction ki can be defined by the user or determined by the settlement
calculation. These two options for defining the modulus of subgrade reaction are described in the next
sections.

10.4.6.1 Modulus k is calculated from soil layers

In this case, variable modulus of subgrade reaction k; are calculated at different elements i.

i)

i)

First, linear distribution of contact pressure q© on the bottom of the beam foundation is
assumed as (Figure 10.4)

q® =—+—Lx (10.18)

For a set of n elements, the soil settlement s; at element i due to contact pressure is obtained
from the following formula according to Ohde (1942)

s; :Zciyj q, (10.19)
j=1

where ci j is the flexibility coefficients of point i due to a unit loading on element j

From the calculated soil settlement si; and contact pressure g, the modulus of subgrade reaction
for all elements k; is computed according to Figure 10.4, Winkler (1867)

K = (10.20)

The mean modulus of subgrade reaction kr, for the whole beam is then given by
l n
Kam = D ki (10.21)
i=1

where n is the number of elements
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The further calculation is carried out using the Elastic Beam by Modulus of Subgrade Reaction after
Kany/ El Gendy (1995).

e
e
e
——
~
e
e
e
e
e e

g,

Linear contact pressure distribution

1
1 1 .
: !

O O R A

Settlement from linear contact pressure

|

T
I
1

Variable modulus of subgrade reactions

[
-

Figure 10.4  Calculation of modulus of subgrade reaction

10.4.6.2 Modulus k is defined by the user

The user can define the modulus of subgrade reaction k, which is constant or variable from element
to element.
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10.5 Elastic Beam Foundation by Kany (1974)

Continuum model was first proposed by Ohde (1942), which based on the settlement occurs not only
under the loaded area but also outside it. Otherwise, the settlement at any point is affected by loads
at all the other elements. Using this concept, influence lines of the settlement due to loaded areas on
the surface can be constructed as shown in Figure 10.5.

From influence lines of the settlement of Figure 10.5, the settlement s; at the center of the element i
can be obtained from:

S = S$,; + S, + S5 + + S,
S, = Sy S0 T S5 + Sy
S = G5, + S5, + S35 + + S;, (1022)
Sy = Sp1 + Sp, +* Suz + .. + S,

where si,j [m] is the settlement of point i due to a uniform load gj [kN/m®] on element

Since the settlement s;, j can be obtained as a function of a uniform load g;j on the surface, the settlement
with a flexibility coefficient can be written as follows:

S, =G4, (10.23)
where cij [m3/KkN] is the flexibility coefficient of point i due to a uniform load g; at element j.

Equation (10.18) can be rewritten with flexibility coefficients as:

S = €¢:4 + 6,0, + C3Q; + .. + C,(Q,
S, = €,4 + ¢C,Qq, + C30; + .. + C,,(,
S = G0, + G0, + G303 + .. + C3,(Q, (10 24)
Sn = Cn,l ql + Cn,2 q2 + Cn,3 q3 + + Cn,n qn

10.5.1 Settlements s;

Now, consider the beam foundation shown in Figure 10.6 is divided into equal elements, each of a
length a. Assume that the contact pressure distribution can be approximated by a series of uniform
blocks of contact pressures. These contact pressures gn are selected as the unknowns of the problem.

For a beam of equal elements, the flexibility coefficients then becomesc; ; =¢;; =c; andc;; =c,.
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n1

Influence lines of the settlement

Figure 10.5
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Therefore, the settlement s; at the center of the element i can be written as:

S1 - C0 ql + Cl q2 + CZ q3 + .t Cn—l qn
S, = €60 + GQ + C0G; + + G20,
S5 = 64 + GO + G0 + + Gy (10.25)
Sn = Cn—l ql + Cn—2 q2 + Cn—S q3 + o F CO qn
In general:
Si:ZCi-jqj+ZCj-iqj (10.26)
=1 =i+l

10.5.2 Moments M;

Using Clapeyron's three-moment equation, the deflection of the beam (= settlement of the soil) s; can be
related to the moment M;. For continuity of the elastic curve at the center of element i, it is required for
elements 2 to n-1

2

~51+25,- 5= (UM e+ V2 Mo+ Wz M) 2
6EI,
2
— a
-S,+2s3-5,~ (Us M2Fvi Mstw M4)
6EI;
2
— a
‘S3+254‘S5— (U4 |\/|3+V4|V|4+W4M5)
6EI,
(10.27)
2
-Spot 2 Sh-1~ Sn— (Un—l Mozt Ve Mot wea M n)
6E In—l
In general:
2
-Sia+t 25~ Sim= (Ui MiatviMitw M i+1)m (10.28)
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Point load A, P,

GS

Uniform load pr,

Edge moment
M, +)

Settlement of the soil
= Deflection of the beam

Loads and settlement (deflection) of the beam foundation
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H H 1 H H H H I H
1 1 1 1 1 1 1 1 1
i i i i i i i i i
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Plan of the beam foundation with elements
WX A\ Za\74
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1 |
8 3
Contact pressure
%:1
ITET!
! C ! ! H H |
i ¢,
1
1

Influence line of the settlement due to a unit load gy,=1 on area a.8
Figure 10.6  Elastic Beam Foundation by Kany 1974
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where u;, vi and w; are stiffness influence coefficients and are given by

2 li1
Vi:l (L+14+ li j’
4\ 1y lia

1 li
wi=7 |1+
2 ( |i+1j

and li [m*] is the moment of inertia for cross section element i and is given by
_ Bd?}
=
The moment M; of external forces at the center of element i can be written as:

M:=Mr+a Bg,-M,"
Ms=Mn+2a°Bg+a’Bq,- M3

Ms=Mq +32° Bg,+2a2 B, +a’ Ba; M.,"
(10.29)

Mui= Mg+ (n—1)q,a’ B+(n-2)q,a’ B+(n-3)q,a?B+...- M .

In general:

Mi=Mm+a°BY (i-j)q;-Mm" (10.30)

j=1
where M, is the external moment due to external loads acting on the center of element i.

10.5.3 Contact pressures g; for a general case

By eliminating si and Mi from Equations (10.26), (10.28) and (10.30), the following equation for i= 2
to i= n-2 can be obtained:

i(ci—jﬂ‘l‘ [(' - i)ui +(i - ] +1)Vi +(i -+ Z)Wi]%jqj+{co+ Wi %jqi +§Cj Gi.; = R (10:31)

The constant C; is related to ci where

Co=2(c, —C,), C1=Cy—2C, +C,, C,=C, —2C, +C5,...Cn2=C, 3 —2C, , +Cp,
and
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2

Ri= (Ui MY tvim %+ wim (I)i+1)62 (10.32)
li

Equation 10.31 can be applied at elements 2 to n-2, therefore two further equations are required to obtain
the n unknown contact pressures gz to gn. This can be done by considering the overall equilibrium of the
vertical forces and moments of the beam foundation.

10.5.3.1 Equilibrium of the vertical forces:

The resultant N due to external vertical forces acting on the raft must be equal to the sum of contact
forces

2V =0
(10.33)
aB(q1+q2+q3+...+qn) - 2P=0

10.5.3.2 Equilibrium of the moments about y-axis:
Furthermore, the moments around the y-axis must be in equilibrium

XM =0
(2n-1)
2

(10.34)

(2n-3) (2n-5)
2 2

dia’ B+ g,a’ B+ anZB+...+%qna2 B-Mg+Mg, —ZM =0

Equation 10.31 to Eq. 10.34 can then be used to obtain the unknown soil contact pressures g» for any
arbitrary external loading condition. Settlements of the soil under the beam foundation can be obtained
by substituting the calculated contact pressures in Eq. 10.26.

Once the contact pressures gi are obtained at the various sections, then the internal forces in the beam
can be calculated.
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10.5.4 Contact pressures gi for constant I;

For constant li=l, y;=1, v;=4, w;=landa; = «. Then Eq. 10.31 becomes
Z(Ci—j+l+ (i -] +1)(Xi)qj+(co + %jqi +Zqui+j =Ri (10.35)
j=2 =1

For i= 2 to i=n-2, Eq. 10.35 becomes:
(04
(Cl + a)Ql +(Co +qu2 +C,0;,+C,0, +..+C, ,0, =R,
[04
(Cz + Za)ql + (Cl + a)Qz + (Co + Ej% +Cq,+..+C, 50, =R,

(Cs + 30()(]1 + (Cz + Za)qz + (Cl + a)q3 + (Co + %qul +Ci0s...+C,,0, =R, (10.36)

a
(C,, +(n=2)a)y, +(C, 5 +(n-3)a)a, +...+(C0 +€an_1 +..+Cq, =R,

-10.23-



Analysis of Beam Foundations

10.5.5 Contact pressures g; for symmetrical case

For a symmetrical beam foundation with n=8 elements, the number of equations can be reduced to 4.
Due to the symmetry gqi=0s, 2= q7, g3= 0s and q4=0Qs.

Equation 10.33 and Eq. 10.36 becomes:
+ +q.,+ = —
0, +04,+0Q;+q, aB

(C,+Cy +a)y J{C0 +C, +%]q2 +(C,+C,)a; +(C, +C,)a, =R,

(10.37)
(C, +C, +2a)y, +(C, +C, + )y, +(C0 +C, +%)q3 +(C,+C,), =R,
(C,+C, +3a)y, +(C, +C, +2a)q, +(C, +C, + a)q, +(C0 +C, +%jq4 =R,
In matrix form:
i 1 1 1 1 ]
(C,+C, +a) (Co+05+%j (c,+C,) (c,+C,) |[a %
4 _JR
(C,+C,+2a) (C,+C,+a) (CO+C3+%j C+c) [laf 1 @
3
C,+C,+3z) (C,+C,+2a) (C,+C,+a) [C,+c,+%]|% (R,
3 4 2 3 1 2 0 1 6
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10.6 Rigid beam foundation by Kany (1972)

In the case of rigid beam foundations, it is assumed that the beam is so thick that no significant
deformations of the beam occur.

In many practical cases, it is convenient to treat the beam as being infinitely rigid, where two
conclusions can be drawn concerning beam settlement:

1. If there are no moments M = 0 caused by load eccentricity, all points on the beam will go
down the same amount S.

2. If there are moments M # 0, the beam will rotate as a rigid body and there will be differential
vertical movement between points on the beam, but all points will remain in the same plane.

10.6.1 Case of an eccentric load (ex# 0)

For a beam with an eccentric load about y-axis (Figure 10.7), the unknowns of the problem are n
contact pressures g, the uniform rigid body translation s, and the rotation a about y-axis.

10.6.1.1 Soil settlements

To formulate the stiffness matrix for analyzing the rigid beam foundation on a layered soil medium
(isotropic elastic half-space soil medium may be also applied), consider a set of n elements of the
beam as shown in Figure 10.7. According to Kany (1972), the contact pressure at rigid beam-subsoil
interface can be approximated by a series of blocks of uniform stress intensity. The settlement s; at a
soil element i due to contact pressures on n elements is given by

S = G6Qq + ¢ + C (3 + + ¢ 0,
S, = ¢ 0, + GCQ, + ¢CQ + .. + Cq,
S = ¢,q + ¢CQ + CQ; + + €30, (10.39)
Sn = Cn—l ql + Cn—z q2 + Cn—3 qS + + C0 qn
In general:
Si:ZCi-jqj+ZCj-iqj (10.40)
j=1 j=it

where cij is the flexibility coefficient of an element i due to a unit load g; at element j, [m%kN].

Considering the entire beam foundation, Eq. 10.40 is rewritten in matrix form as:

{s}=[c]{a} (10.41)

where

{s}  Vector of settlements

[c] Flexibility matrix

{q}  Vector of contact pressures
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Figure 10.7  Rigid Beam Foundation by Kany 1972 (case of an eccentric load)
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Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [ks] corresponding to the
contact pressures at the n elements such that

{a}=[k,]{s} (10.42)

where [K]=[c]™* is the soil stiffness matrix.
10.6.1.2 Rigid body translation s, and rotations a

Due to the beam rigidity, the following linear relation expresses the settlement s; at the center of
element i that has a distance x; from the geometry centroid:

Si—= s, + x tan a (10.43)

Equation 10.43 is rewritten in matrix form for the entire beam foundation as

S1 _1 XJ
S2 1 Xz
S3 1 X,
- { S0 } (10.44)
11 |ltana
Sn) |1 x|
Equation 10.44 is simplified to
s =[x] {a} (10.45)

where
{A} Vector of the beam deformation from so, tan o
[X]" Geometric matrix of the beam with coordinate x

Substituting Eq. 10.45 into Eq. 10.42 gives

o) =1k J[XT {a) (10.46)
Equation 10.46 is a matrix of n equations with n+2 unknowns, namely the contact pressures gz to g, the
uniform rigid body translation s, and the rotation o about y-axis. Therefore, two further equations are

required. This can be done by considering the overall equilibrium of the vertical forces and moments of
the beam foundation.
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10.6.1.3 Equilibrium of the vertical forces:

The resultant N due to external vertical forces acting on the raft must be equal to the sum of contact
forces

>V =0
(10.47)
N=aB (q,+0, +q; +..+0,)

10.6.1.4 Equilibrium of the moments about y-axis:

Furthermore, the moment M=N.ex due to resultant N about the y-axis must be
equal to the sum of moments due to contact forces about that axis

XM =0
} (10.48)
M =aB(d, X, + G Xz + U Xa + oo+ Gy Xn)
Equations 10.47 and 10.48 are rewritten for the entire beam foundation in matrix form as
0,
a,
s
{N}za.B{l 1 1 w1 (10.49)
M X1 X2 X3 v Xn
On
Equation 10.49 is simplified to
IN}=[xKa} (10.50)
where
{N} Vector of the resulting forces and moments on the beam
{q} Vector of contact pressures
[X]  Geometric matrix of the beam with coordinate x
Substituting Eq. 10.46 into Eq. 10.50 gives the following linear system of equations
{NF= Xk, HIXT {a} (10.51)
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Solving the system of linear equations Eq. 10.45, gives s, and tan a. Substituting the s, and tan o in
Eq. 10.46 to find the n unknown contact pressures. Then, substituting also the s, and tan o in Eq.
10.45 to find the n settlements.

10.6.2 Case of a uniform settlement (ex=0)

For a beam with a centric load (Figure 10.8), the settlement will be uniform (si = So) and the beam
will not rotate (o = 0). Therefore, the unknowns of the problem are reduced to n contact pressures Qi
and the rigid body translation so. The derivation of the uniform settlement for the rigid beam can be
carried out by equating the settlement s; by a uniform translation s, at all elements on the beam.

In case of a beam with a centric load, Eq. 10.52 may be written as:
{at=[k]{s.} (10.52)
where Sq is the uniform settlement of the soil at all elements under the beam.

Expanding Eg. 10.52 for all elements and equating all settlements by uniform rigid body translation
So, yields to the contact forces as a function in terms k;, j of the matrix [k] as follows:

q, = k1,1 S, + kl,z S, + k1,3 S, + + kl,n S,
q, = k2,1 S, t kz,z S, + k2,3 S, + k2,n S,
= k,,s, + k,,s. + k,,s, + + k,. S
q3 3,1 %o 3,2 Yo 3,3 Yo 3,n Yo (1053)
qn = kn,l SO + kn,2 SO + kn,3 SO + b + kn,n SO

Carrying out the summation of all contact pressures in Eg. 10.53, leads to:

Sa-53 Tk, 054

i=1 i=1 j=1

Replacing the sum of all contact pressures in Eq. 10.54 by the resultant N/aB, gives rigid body
translation so, which equals to the settlement s; at all nodes, is obtained from:

S = i=l = (1055)

Substituting the uniform rigid body translation s, into Eq. 10.53, gives the n unknown contact
pressures gk by
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N Zkk,j
=1

O = % (10.56)
aB> ki
=1 j=1

It should be noticed that Eq. 10.55 is analogous to Eq. 10.3 for Winkler’s model.

q, =k,s (10.57)

sT0

where k :Zn: Zn:k” andg, =N/aB

i=1  j=1
Therefore, the summation of terms kij may be used to determine the modulus of subgrade reaction ks.
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Figure 10.8  Rigid Beam Foundation by Kany 1972 (case of a uniform settlement)

10.7 Flexible beam foundation

In addition to the possibility for analyzing elastic and rigid beams by GEO Tools, the algorithm
described before can be also used to calculate the settlement of a flexible beam foundation. The
contact pressure and the settlements due to loads (uniform loads and concentrated loads) on the base
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area can be determined using the soil properties. In this case, the stiffness of the beam is not taken
into account.

If the beam foundation is perfectly flexible (such as a strip of an embankment), the contact pressures
will be equal to the applied distributed loads on the beam foundation, Figure 10.9.

For the set of grid points of the beam foundation, the soil settlements are

Sl - C0 ql + Cl q2 + CZ q3 + + Cn—l qn
S, = ¢ + GQ + CGQy + .. + Cp0,
S = GO0+ GO+ Gl + o+ Gl (10.58)
Sn = Cn—l ql + Cn—2 q2 + Cn—S q3 o F CO qn
In general:
Si:ZCi—jqj+ZCj—iqj (10.59)
j=1 j=i+

where cijj is the flexibility coefficient of an element i due to a unit load g; at element j, [m%kN].
Considering the entire beam foundation, Eq. 10.58 is rewritten in matrix form as:

{st=1[clia} (10.60)
where
{s}  Vector of settlements

{g} Vector of contact pressures (applied distributed loads)
[c] Flexibility matrix
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Figure 10.9  Flexible Beam Foundation
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10.8 Beam foundation rigidity

The rigidity of the beam foundation depends on the ratio between the rigidity of the beam and the
soil. Based on great number of comparative computations for Continuum model and Winkier’s model,
Gral3hoff (1987) proposed various degrees of system rigidity between foundation and the soil until
case of practical rigidity.

The system rigidity Kst for Continuum model is expressed by

_Es(d ’
Kst_E_ T (10.61)

while the system rigidity Ky for Winkler’s model is expressed by

_Eu(d ’
Kp= M [Tj (10.62)

where

Eb Modulus of Elasticity of the beam material [kN/m?]
Es Modulus of Compressibility of the soil [kN/m?]

k Modulus of Subgrade Reaction of the soil [kN/m?]
d Foundation thickness [m]

I Foundation length [m].

In which for modulus of Continuum model, Kst= 1 indicates rigid foundation and Kst = 0.01 indicates

flexible foundation, while for Winkler’s model, Ky, = 0.2 indicates rigid foundation and Ky= 0.002
indicates flexible foundation.
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10.9 Influences on results
10.9.1 Influence of external foundations

In many practical cases, it becomes important to assess the behavior of a foundation due to its interaction
with another structural foundation or additional external loading. In this case, the settlement s; of the
beam in element i is replaced by sio+Si.a, Where si 4 is the additional settlement due to external foundation.

Due to the external foundation, the settlement s; at the center of element i can be expressed by

Si = Sip +Sia (10.63)
where
Sio Settlement at the center of element i due to the load acting upon the foundation [m]

Sia  Additional settlement at the center of element i due to the external foundation [m]

Due to the influences of external settlements, the right hand side R; of Eqns 10.11 and 10.32 becomes:

2

+Siaa-2Siat Siva (10.64)

a
Ri= (Ui MO FviM Y +wim (I)i+1)6E N
1

External foundation
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Figure 10.10 Beam foundation under application with external foundation
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10.9.2 Influence of temperature change

Sometimes, a temperature difference AT occurs between the upper and lower surface of the beam
foundation. An example for this case is when a fire oven or boiler is constructed directly on the beam
foundation in an industry structure. In this case, the settlement s; of the beam at the center of element i is
replaced by Sio+Sia+ Ai, where Aj is the deformation due to temperature change.

Due to the temperature change, the settlement s; at the center of element i can be expressed by

S = Sip +Sia T A (10.65)

By assuming the warped surface as part of a cylinder, it can be proven from geometry, Figure 10.11,
that:

0 ATr (10.66)
I 2d .
where
Ai Amount of curvature at element i [m]
or Coefficient of thermal expansion of concrete = 5x107 [1/°c]
ri Distance from element i to the center of the beam where curling is zero [m]

d Thickness of the beam [m]
AT Temperature differential between the upper and lower surface of beam [°C], AT =T,-T,

To Temperature at the upper surface of the beam [°c]
Tu Temperature at the lower surface of the beam [°c].

Positive deflection when the beam warps down with a temperature at the top bigger than that at the
bottom.

Due to the temperature change, the right hand side R; of Eqns 10.11 and 10.32 becomes:

2 2
_ a o; .AT.a
Ri = (Ui M (|)i_1_|_ ViM (I)i +wi M (I)i+1)— +Siaa-2Siat Siwa———

10.67
6E | di ( )

-10.36-



GEO Tools

i T>T,

Figure 10.11 Influence of temperature change on the beam
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10.9.3 Influence of groundwater pressure

If the water table is located above the beam foundation, the beam foundation will be exposed to an
additional negative pressure qw due to the effect of groundwater. This can be taken into account in
the settlement calculation. In this case, an additional negative uniform load - qw on the base beam
foundation is added to the applied uniform load on the beam.

Figure 10.12 shows an example for a beam subjected to a uniformly distributed loading pr equal to
the weight of the beam itself minus the uplift:

Own weight of the raft Wo = ypXd

Up lift pressure Aw = YwX(T+Tw)
TOta| pf =Wp - qW
where

d Thickness of beam [m]

Tw  Groundwater depth under the ground surface [m]
Tf Foundation depth under the ground surface [m]
b Unit weight of the beam material [KN/ m?]

Yw Unit weight of the water [KN/ m®].
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10.10 Formulation of flexibility coefficients

First, n settlements s; due to average soil pressure go are calculated using the defined system of loading
and subsoil data. In which, n is number of elements of the beam. Then from settlements s;, flexibility
coefficients cjare calculated for n elements, Eq. 10.67.

c,=— (10.68)
Finally, settlement differences Ci are calculated from ci, Eq. 10.68. The settlement differences are
used as input data for setting up the linear system of equations.

C,=c¢,—-2c, +cC, (10.69)

When calculating the settlements s;, the characteristic point P is used. According to Figure 10.13, it
is at the intersection of the straight line parallel to the y-axis in the section 0.74xa/2 from the middle
of the element or parallel to the x-axis is at a distance of 0.74xb/2. Characteristic point is a point at a
rectangular loaded area, in which the flexible settlement is identical with the rigid displacement.

Figure 10.13 Element division and numbering of elements in the settlement calculation
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In GEO Tools, the calculated settlements s;, flexibility coefficients c; and settlement differences C;
are displayed on the screen and can be printed in tables to check the results. This makes it possible to
compare the calculation results with the table values after Kany (1974).

The following sections describe the settlement calculation.
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10.11 Settlement calculation

10.11.1 Introduction

Soil medium may be considered as an isotropic elastic half-space soil medium or a layered continuum
soil medium. The settlement equations of both mediums are presented in the next sections. The first
one is used when a simplification for analyzing beam on elastic foundation is required. Representing
the soil as a layered continuum medium is more complicated than that as an isotropic elastic half-
space soil medium. Kany (1954) presented an extension of Ohde’s method (1942) to beam foundation
resting on nonhomogeneous and anisotropic soil medium. It can be applied for more accurate analysis
of beam on elastic foundation.

10.11.2 Settlement due to a concentrated load on half-space medium

The settlement si [m] at the surface outside the point of application of the concentrated load Q;j [kN]
at a point j on an isotropic elastic half-space soil medium is given by, (Figure 10.14):

1 —-v?
s, = Q1 -v?) (10.70)
nE I
Si Settlement under point i due to a concentrated load at point j [m]

Q;j Concentrated load at point j at the surface [KN]
Fij Radial distance between points i and j [m]

E Young's modulus of the soil [kN/m?]

Vs Poission's ratio of the soil [-].

L

-

¢
T

J

Ground surface / J

SIS ST SRS SR

Figure 10.14 Settlement due to a concentrated load on an isotropic elastic half-space soil medium

10.11.3 Settlement due to a circular loaded area on half-space medium

The settlement s, [m] at the surface under the center of a circular loaded area of a radius r [m] and
intensity g [kN/m?] on an isotropic elastic half-space soil medium is given by (Figure 10.15):

s, = w (10.71)
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Figure 10.15 Settlement due to a circular loaded area on an isotropic elastic half-space soil medium

10.11.4 Settlement at a depth z due to a loaded area

According to Steinbrenner (1934), the settlement s(z) at a depth z under the corner of the loaded area
axb and intensity g [KN/m?] on an isotropic elastic half-space soil medium is given by (Figure 10.16):

S (Z) _ q (;';\ész) (b In (C+a) +aln (C+b)J_ q (1_;’;—E2 Vsz) (Z tan—l j_gj (1072)

(c-a) (c-b)

LS(Z)
2

Figure 10.16 Settlement s(z) under the corner of a loaded area on elastic half-space medium
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10.11.5 Settlement at the surface due to a loaded area

The settlement s(0) of a point at the surface under the corner of a rectangular loaded area on an
isotropic elastic half-space soil medium is obtained by putting z=0 in Eq. 10.72

s(0):q(1_—vsz) bin M+, oy (M+D) (10.73)
2nE (m-a) (m-b)

where in Eq. 10.72 and 10.73is ¢ =+va® +b* +z* and m=+a’+b’

10.11.6 Settlement of a finite layer due to a loaded area

For the settlement Eqns 10.72 and 10.73 presented above, it was assumed that the soil layer extends
to an infinite depth. However, if a rigid base at a depth z = h underlies the soil layer, the settlement sh
of the layer can be approximately calculated as (Figure 10.17):

s, =S(0)—s(z) (10.74)
G d surf 9
round surface J
//_"\rw&—f s
°°. .oo. L P 15(0)
T Soil of £+ vs 4
—;.;:::,:__________ﬁ_____,____m
a) 82

g
Ground surface
nd sur \lz [ f;

o o %, W/W/ .y
.o . °°° T a T
Lee? Layer of £ vs 7=/
: et : Vi
' Y )l T 4 | | ]
b) Rigid base

Figure 10.17 a) Isotropic elastic half-space soil medium

b) Elastic layer on rigid base
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Subtracting Eq. 10.72 from Eq. 1.73 yields

. = q (1—V32)(b n (c—a)(m+a) +ah (c—=b) (m+b)J_ q@-—v, —ZVSZ)(Z tan-lj—_gj (10.75)

2nE (c+a)(m-a) (c+b)(m—hb) 2nE

Equation 10.75 can be simplified to

s, :% f (10.76)
10.11.7 Settlement of multi-layers due to a loaded area

Obviously, it can generalize this approach to consider multi-layers of soil. Each has different elastic
material and thickness as shown in Figure 10.18. The vertical settlement of a layer | in an n-layered

system is given by

FO _ 0D AFO
s, =q(T =a| o (10.77)
Ground surface
S S5 q 7
_Zz=0 s=0____ v v v v 9 9 9l ________________.
F 1 l —_ =
z Layerl £ n =
2 3 - =
| Lo 2! layer2 & 4! (A=
Z ooee
Z v Sk e S
7 s, Layer / £ 3/7; S
Layer n £, I/
i Sn
— vV — v v\ — v v v v v v
Rigid base

Figure 10.18 Layered system
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The total settlement for n-layered system is

f (3] nAf )
s= q( Tt =m J (10.78)
E = E

Considering Poisson’s ratio vs for all soil layers is constant as its value for most soil types ranges
between 0.3 and 0.5.

10.11.8 Settlement at an interior point of loaded area

So far, it has been considered the settlement beneath a corner of a loaded area. To find the settlement
at any other point, the principle of superposition can be used. The settlement at an interior point of
the rectangular loaded area is given by the sum of the settlements at the corners of four sub-loaded
areas. To determine the settlement coefficient f for a layer | at an interior point i of the rectangular
loaded area shown in Figure 10.19, the Formula of Kany (1974) can be applied as

fO=FfO 4 f0, 4 £0;4 10,

:ii{(l—vsz){bn i &= @) (M+a,) oy, (€ =Di) (M +b“)}+(1—vs —2v)z, tant 2 b"}
2n 1 (c,+a,)(M-a,) (c,+b,)(M —=b,) z,C,

(10.79)

where ¢, =+/a,> +b > +2° und M =,/a,’+b ’

The value zi means the level of the lower side of the layer | from the foundation level.

a

—_—

S=St+9Ht+S+s

: © 0| |

Interior point J

a a

Figure 10.19 Superposition of four loaded areas to find the settlement at an interior point i
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10.11.9 Settlement at a point outside the loaded area

Adding and subtracting corner settlements for four loaded areas can obtain the settlement of any point
outside the loaded area as shown in Figure 10.20. First, the settlement s; as if the entire region defined
by load q is determined. Then, the settlements due to the two edge loaded areas s, and ss are
subtracted. Finally, the settlement s4 is added since it has been subtracted twice in s and s3. Using
the same process, the settlement coefficient f) for a layer | at an exterior point i of the rectangular
loaded area shown in Figure 10.20 is given by

fFO_fO, _fO, 0, _§0, (10.80)

+a | g b+t (D

|
ata
i
Exterior point /
P -2 | g b+t @
b
—t
Si = a
q b /
g Ibl
—t—
a a -8 @
—
/ ata

+ S @

Figure 10.20 Superposition of four loaded areas to find the settlement at an exterior point i
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10.12 Determination of limit depth

The assumption of the isotropic elastic half-space soil medium requires an infinite soil layer having
the same compressibility under the foundation. Practically, the soil consists of many layers with
different soil materials. For layered soil medium, the number of layers in a boring to be considered
when determining the settlement depends on the level of the rigid surface or on the limit depth zq
where no settlement occurs. The limit depth zg under the foundations is the level of which the stress
ou reaches a standard ratio & of the initial vertical stress ov as indicated in Figure 10.21 and the
following equation

o, =C o, (10.81)
where
ou=oe+op Stress due to the foundation load and the external foundation loads [KN/m?]
OE Stress due to the foundation load [KN/m?]
oD Stress due to the external foundation loads [kN/m?]
ov =Xyz Stress due to the self-weight of the soil layers [kN/m?]
v Unit weight of the soil layer [KN/m?]
z Depth of the soil layer [m].

An examination from Amman/ Breth (1972) showed that the values £ may be taken as § = 0.8,
especially for reloading soil. The standard value of £ according to DIN 4019 is £ =0.2.

GS
y 7 > > N > 7 >
ow (D
I Stress due to A
Initia the external
vertical foundation /| °¢ ©)
stress oy load op |
|
i Stress due to the @
£ i foundation load o2
: b
}
i
/ \ i ®
i
1 |
i ®
c ! ocu=¢&o
% 1<=| U % V

Figure 10.21 Limit depth zg under a foundation
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10.13 Bilinear soil behavior
10.13.1 General

The yielding of the subsoil is described by the modulus of compressibility (or modulus of elasticity),
which can be determined from the stress settlement curve. A simplified way was supposed to improve
the deformation behavior of the soil by dividing the stress settlement curve into two regions, Figure
10.22.

e In the first region, the ground will settle until reaching an overburden load qv according to the
modulus of compressibility Ws.

e In the second region after reaching the load qv the ground will settle more under load g
according to the modulus of compressibility Es until reaching the total load qo.

Bearifng capacity Ioaﬁing z
qu/z Vo ................................ ......................
g | Loading < e
S Q. - ..................... L.(?ad.ing.‘par.t .......................
LA
! 1
| Reloading part
Sw Sc

Settlement
Figure 10.22 Load settlement diagram (bilinear relation)

At first, it should be carried out a primary calculation by one of the following two cases:

Case 1: qv<go
The settlement s;i of the beam foundation at the center of element i can be derived from two variations
such that

S, =Sy + Sg; (10.82)
where

Swi Settlement at the center of element i due to load from o to qv with modulus of compressibility
W; (part of reloading) [m]
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SEi Settlement at the center of element i due to load from gy to o with modulus of compressibility
Es (part of primary loading) [m].

It can be generally said that the total contact pressure on the beam foundation is given by
go=qu+ge (10.83)
where qu=qv is the overburden pressure [KN/m?]

Case 2: gqv>qo
The settlement equation will be

S; =Swi (10.84)
In this case, the contact pressure on the beam foundation is go, where go< gqv

If one of the above two cases is not existent, an iterative solution for the settlement equation will be
necessary.

The bilinear relation of the soil deformation may be taken into consideration as follows:
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10.13.2 Bilinear soil behavior for elastic beam foundation (Kany/ EI Gendy 1995)

First, n settlements sgi due to loading part ge and n settlements swi due to reloading part qu are
calculated using the defined system of loading and subsoil data. In which, n is number of elements of
the beam. Then from settlements sgi and swi, flexibility coefficients cei and cwi are calculated for n
elements, Eq. 10.85.

— sEi
ce = —EL
qe (10.85)
cw, = sﬂ
qu

For element i, the summation equations of the settlements are given by
Swi — Z Cwi-jqu+ Z cw;.i qu
= e (10.86)
Sei= ».C6_; ge+ > ce ge
j=1

j=i+l

where

qv Overburden pressure [KN/m?]
qu=qv Reloading contact pressure [kN/m?]
ge Loading contact pressure [KN/m?]

gqo=qv+ge  Average soil pressure [kN/m?].

The mean modulus of subgrade reaction ky for the whole beam is then given by

K = EZ(MJ (1087)

N\ Swi + Sgi
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10.13.3 Bilinear soil behavior for elastic beam foundation (Kany 1974)

First, n settlements sgi due to loading part and n settlements swi due to reloading part are calculated
from the defined profile and all layers below the foundation base using the defined system of loading
and subsoil data. In which, n is number of elements of the beam. Then from settlements sg; and swi,
flexibility coefficients cej and cw; are calculated for n elements, Eq. 10.85.

— SEi
ce, = —-
qe (10.88)
qu
The loading contact pressure ge is given by
ge=go-qv—qw (10.89)
where
qv Overburden pressure [KN/m?]
qu=qv Reloading contact pressure [kN/m?]
ge Loading contact pressure [KN/m?]
qw Groundwater pressure [kN/m?]
qo Average soil pressure [KN/m?].

Finally, settlement differences Cei and Cw; are calculated from cej and cw; values, Eqg. 10.90. The
settlement differences are used as input data for setting up the linear system of equations.

Cei = Cei—l — ZCGI + Cei+1 (10 90)
Cw, =cw, , —2Ccw, +CW,,, |

In GEO Tools, the calculated settlements sgi and swi, flexibility coefficients cej and cw; and settlement
differences Cej and Cw; are displayed on the screen and can be printed in tables to check the results.
This makes it possible to compare the calculation results with the table values after Kany (1974).

10.13.3.1 Settlements s;

The settlement s; at the center of the element i for linear behavior is given by
Si = zci—jqj+ Z Cj—iqj (1091)
j=1

j=i+l
For bilinear behavior
Si = Swi T Sg;

:(IZ CW,_; qu+ i cwW; un+(i ce_; ge; + i ce,; ge,
I j=1

J (10.92)
j=i+l j=i+l

10.13.3.2 Moments M

Clapeyron's three-moment equation for linear behavior is given by

- Sia+ 2~ Siu= (Ui MiatTviMitwi M i+1) (10.93)

_a
6E I

For bilinear behavior
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2

(- seia+ 2 sei- Seia) + (- swia* 2 swi - Swien) = (U Mia Vi Mi+ Wi Miaa) 6 E | (10.94)
The moment M; of external forces at the center of element i for linear behavior is given by
Mi=Mm+a’BY (i-))q;-M" (10.95)

=1
For bilinear behavior:

Mi=Mm+a’BY (i-j)ae; +a’BY (i- ) qu-m"
= = (10.96)

10.13.3.3 Contact pressures gi for general case

By eliminating si and Mi from Equations (10.92), (10.94) and (10.96), the following equation for i= 2
to i= n-2 can be obtained:

(CEi-j+l+[(i' Duit (- j+Dvi+(i- j+2)w ] jqe (CEO+W| 6) & +ZCequ.+,

i=2 i=

+§(CWi-j+1+[(i' j)Ui+(i' j+1) (I- J+2)W.] 6jqu+[(;wo+w, ]qﬁZCW qu (10.97)

= (Ui MO FviM D +wi M (I)i+1)62 li

or _

(oo [ D - v -+ 2)wl % ey o{ covs i € o+ Sicesce, =
j=2
(10.98)
where
Ri= (Ui MY Fvim D +wim (I).+1) ;Z

OE 1, (10.99)

n—i

—;(Cwi-j+l+[(i-j)ui+(i-1+1)vi (‘-J+2)w.]6jqu (cww. jqu 2. Cw;qu

=1
The constants Cej and Cw; are related to cej and cwi; respectively, where

Ce,=2(ce, —ce,), Ce,=ce, —2ce, +Ce,, Ce,=Ce, —2C€, +Ce;,...Cen»=C€, ; —2C€, , +Ce,
Cwo = 2(CW, —CW, ), Cw = CW, —2CW, +CW,, Cw, = CW, — 2CW, + CW,,... CWn_» = CW,_ — 2CW, , +C€, ,

Equation 10.98 can be applied at elements 2 to n-2, therefore two further equations are required to obtain
the n unknown contact pressures ge: to gen. This can be done by considering the overall equilibrium of
the vertical forces and moments of the beam foundation.

10.13.3.4 Equilibrium of the vertical forces:

The resultant N due to external vertical forces acting on the raft must be equal to the sum of contact
forces
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2V =0
(10.100)
a.B(qe1 +0Qe,+0qe;+...+ qee) +naB.qu- XP=0

10.13.3.5 Equilibrium of the moments about y-axis:

Furthermore, the moments around the y-axis must be in equilibrium

M =0
2 2

N n“.a°.B.qu _0
2

Equation 10.98 to Eq. 10.101 can then be used to obtain the unknown soil contact pressures gen for any
arbitrary external loading condition. Settlements of the soil under the beam foundation can be obtained
by substituting the calculated contact pressures in Eg. 10.92. Once the contact pressures ge;i are obtained
at the various sections, then the internal forces in the beam can be calculated.
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10.13.4 Bilinear soil behavior for rigid beam foundation (Kany 1972)

For every element i, the summation equations of the settlements s; are first set up with the initially
unknown contact pressure Qi

n

S, = > _.C&, O& + Y_CW,, qu +si_A} (10.102)

k=1 k=1

where

cei,k Flexibility coefficient of element i due to a unit loading contact pressure gex = 1
at the element k [m3/kN]

cwi, k  Flexibility coefficient of element i due to a unit reloading contact pressure qu =1
at the element k [m3/kN]

Si Settlement at element i [m]

sia  Additional settlement at element i [m]

gex  Loading contact pressure on element k [KN/m?]

qu Reloading contact pressure [KN/m?].

Equation (10.102) in matrix form:

si=[c.Jat+[c. Ha b+ 54} (10.103)
k. Jis}=1a.}+ [k J[C. Ko b+ [k s} (10.104)
[k Hs}={a.f+ [k Hsu b+ [k Kisa ) (10.105)
[k Ks}={la.} + i} j+ k. Hsu -+ [k sa b~ o)} (10.106)
[k, s}= {a}+{R} (10.107)
faj=Ik.Jis} —{R} (10.108)
where
{sa} Vector of additional settlement
{ge} Vector of loading contact pressure
{qu} Vector of reloading contact pressure
[Ce] Flexibility coefficient matrix for loading part
[Cu] Flexibility coefficient matrix for reloading part

[ks]= [Ce]*  Soil stiffness matrix for loading part

Substituting Eq. 10.108 into Eq. 10.50, gives

INJ=[xHa}=[X Kk, }s} - 1R }} (10.109)
INJ=[xTk Ks}-[X}R} (10.110)
INJ+[XKP } =[x Tk, Jis} (10.111)
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Substituting Eq. 10.45 into Eq. 10.111, gives
{NF+[XKR =X Tk IX T {a} (10.112)

Vi=[EKa} (10.113)
Solving the system of linear equations 10.113 to get So and tan a. Substituting these values in Equation

10.45, gives n unknown soil settlements si. Then substituting the n soil settlements in Equation
10.108, gives the n unknown contact pressures
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10.14 Soil properties and parameters
10.14.1 Introduction
The elastic properties of the soil are defined in GEO Tools by the following two different parameters:

1. Modulus of Compressibility Es (1/my)
2. Modulus of Elasticity E

Es [KN/m?] is the reciprocal value of the coefficient of volume change my [m?/kN]
For each soil layer, the input data maybe are
Depth of the layer from the ground surface z [m]

Modulus of Compressibility for loading (constant in a layer t) Es [KN/m?]
Modulus of Compressibility for reloading (constant in a layer) — Ws [KN/m?]

Modulus of Elasticity for loading (constant in a layer) E [KN/m?]
Modulus of Elasticity for reloading (constant in a layer) W [KN/m?]
Unit weight of the soil Ys [KN/m?]
Poisson’'s ratio of the soil Vs [-].

The following sections describe these properties of the soil. Furthermore, the soil characteristics for
different soil types are listed in tables, which may be used in the primary analysis.

-10.57-



Analysis of Beam Foundations

10.14.2 Poisson’s ratio vs

Poisson’s ratio vs for a soil is defined as the ratio of lateral strain to longitudinal strain. It can be
evaluated from the Triaxial test. Poisson’s ratio vs can be determined from at-rest earth pressure
coefficient K, as follows

v, =20 (10.114)

Some typical values for Poisson’s ratio are shown in Table 10.1 according to Bowles (1977).
Poisson’s ratio in general ranges between 0 and 0.5.

Table 10.1  Typical range of values for Poisson’s ratio vs according to Bowles (1977)

. Poisson’s ratio

Type of soil ve [
Clay, saturated 04-05
Clay, unsaturated 0.1-03
Sandy clay 0.2-03
Silt 0.3-0.35
Sand, dense 02-04
Sand, coarse (void ratio =0.4 - 0.7) 0.15
Sand, fine grained (void ratio = 0.4 - 0.7) 0.25
Rock 0.1-04
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10.14.3 Moduli of compressibility Es and Ws

The equations derived in the previous section for calculation of flexibility coefficients require either
the moduli of compressibility for loading Es and reloading Ws or moduli of elasticity for loading E
and reloading W for the soil. The yielding of the soil is described by these elastic moduli. The moduli
of compressibility Es and Ws can be determined from the stress-strain curve through a confined
compression test (for example Odometer test) as shown in Figure 10.23. In this case, the deformation
will occur in the vertical direction only. Therefore, if the moduli of compressibility Es and Ws are
determined from a confined compression test, Poisson’s ratio will be taken vs=0.0. If the other moduli
of elasticity E and W are used in the equations derived in the previous section, Poisson’s ratio will be
taken to be vs= 0. In general, Poisson’s ratio ranges in the limits 0 < vs < 0.5.

Stress o [kN/m?]

Strain € = Ahl h[%]

S Loading

Reloading

Figure 10.23 Stress-strain diagram from confined compression test (Oedometer test)

The modulus of compressibility Es [kN/m?] (or Ws [KN/m?]) is defined as the ratio of the increase in
stress Ao to decrease in strain Ae as (Figure 10.23)

E = A_G' — Oom™Oy
TOAe A (10.115)
W, = Ac” _ o,
Ag"  Ag"”
where

Ac”  Increase in stress from oy t0 6om [KN/m?]
Ov Stress equal to overburden pressure [KN/m?]
com  Stress equal to expected average stress on the soil [kKN/m?]
Ag”  Decrease in strain due to stress from oy to Gom [-]
Ac”” Increase in stress due to reloading [KN/m?]
Ag”" Decrease in strain due to reloading [-].
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The moduli of compressibility may be expressed in terms of either void ratio or specimen thickness.
For an increase in effective stress Ac to decrease in void ratio Ae, the moduli of compressibility Es
[KN/m?] and Ws [KN/m?] are then expressed as

E 1 Ac'(1+e))
*om Ae'
W, = 1 _Ac”"(1+€)) (10.116)
m.’ Ae"
where
m’y  Coefficient of volume change for loading [M?/kN]
m”y  Coefficient of volume change for reloading [M?/KN]
€0 Initial void ratio for loading [-]
e”’o Initial void ratio for reloading [-]
Ae”  Decrease in void ratio due to loading [-]
Ae””  Decrease in void ratio due to reloading [-]

The values of Es and Ws for a particular soil are not constant but depend on the stress range over
which they are calculated. Therefore, for linear analysis it is recommended to determine the modulus
of compressibility for loading Es at the stress range from oy to 6om, While that for reloading W;s for a
stress increment equal to the overburden pressure oy. On the other hand, since the modulus of
compressibility increases with the depth of the soil, for more accurate analysis the modulus of
compressibility may be taken increasing linearly with depth. Also, according to Kany (1976) the
moduli of compressibility Es and Ws may be taken depending on the stress on soil. In these two cases,
the moduli of compressibility Es and Ws can be defined in the analysis for several sub-layers instead
of one layer of constants Es and W.

As a rule, before the analysis the soil properties are defined through the tests of soil mechanics,
particularly the moduli of compressibility Es and Ws. For precalculations Table 10.2 for specification
of the modulus of compressibility Es can also be used.

According to Kany (1974), the values of Ws range between 3 to 10 times of Es. From experience, the
modulus of compressibility Ws for reloading can be taken 1.5 to 5 times as the modulus of
compressibility Es for loading.

For geologically strongly preloaded soil, the calculation is often carried out only with the modulus of
compressibility for reloading Ws. In this case, the same values are defined for Es and W.

Matching with the reality, satisfactory calculations of the settlements are to be expected only if the
soil properties are determined exactly from the soil mechanical laboratory, field tests or back
calculation of settlement measurements.

Table 10.2 shows mean moduli of compressibility Es for various types of soil according to EAU
(1990).
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Table 10.2  Mean moduli of compressibility Es for various types of soil

Type of soil

Modulus of compressibility
Es [KN/m?]

Non-cohesive soil

Sand, loose, round

Sand, loose, angular

Sand, medium dense, round
Sand, medium dense, angular
Gravel without sand

Coarse gravel, sharp edge

20000 - 50000
40000 - 80000
50000 - 100000
80000 - 150000
100000 - 200000
150000 - 300000

Cohesive soil
Clay, semi-firm
Clay, stiff

Clay, soft

Boulder clay, solid
Loam, semi-firm
Loam, soft

Silt

5000 - 10000
2500 - 5000
1000 - 2500
30000 - 100000
5000 - 20000
4000 - 8000
3000 - 10000
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10.14.4 Moduli of elasticity E and W

The equations derived in the previous section to determine the flexibility coefficients are used with
moduli of elasticity E and W for unconfined lateral strain with Poisson’s ratio vs = 0. It must be
pointed out that, when defining Poisson’s ratio by vs = 0 (limit case), the moduli of compressibility
Es and W; for confined lateral strain (for example from Odometer test) also can be used.

The modulus of elasticity is often determined from an unconfined Triaxial compression test, Figure
10.24. Plate loading tests may also be used to determine the in situ modulus of elasticity of the soil
as elastic and isotropic.

Stress o [kN/m?]

AGma)/Z

Ac

€ Axial strain € = A h [%]

Figure 10.24 Modulus of elasticity E from Triaxial test

It is possible to obtain an expression for the moduli of elasticity E and W in terms of moduli of
compressibility Es, Ws and Poisson’s ratio vs for the soil as

1-v, —2v°

E=E,
. 1‘Vs2 i (10.117)
W=w, = sV
1-v,

The above equation shows that:

- In the limit case vs = 0 (deformation without lateral strain), the values of E and Es (also W
and Ws) are equal

- In the other limit case vs = 0.5 (deformation with constant volume), the moduli of

elasticity will be E =0 x Esand W = 0 x Ws. In this case, only the immediate settlement (lateral
deformation with constant volume) can be determined.
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Table 10.3 shows some typical values of modulus of elasticity according to Bowles (1977).

Table 10.3  Typical range of moduli of elasticity E for selected soils

Type of soil Moduéu[sk(l)\:‘/frllg]stlmty
Very soft clay 3000 - 3000
Soft clay 2000 - 4000
Medium clay 4500 - 9000
Hard clay 7000 - 20000
Sandy clay 30000 - 42500
Silt 2000 - 20000
Silty sand 5000 - 20000
Loose sand 10000 - 25000
Dense sand 50000 - 100000
Dense sand and gravel 80000 - 200000
Loose sand and gravel 50000 - 140000
Shale 140000 - 1400000
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10.14.5 Modulus of subgrade reaction ks

It is important to say that the modulus of subgrade reaction ks is not a soil constant, but it can be
related to the elastic parameters Es and vs of the soil.

It may be determined from in situ plate loading test. This test is generally performed using a circular
steel plate (30 in diameter) thick enough so that the bottom plate will settle uniformly under a vertical
load. The modulus of subgrade reaction ks [KN/m?] is defined as the ratio between the soil pressure q
[kN/m?] and corresponding settlement s [m] through the following equation

k, = (10.118)

In practice, the plate would not stress the same soil strata as the full size foundation. Therefore, the
result from a plate-loading test may give quite misleading results if the proposed foundation is large.
The soft layer of soil in Figure 10.25 is unaffected by the plate loading test but would be considerably
stressed by the foundation. Therefore, it is recommended to evaluate the modulus ks from the elastic
parameters Es and vs of the soil.

Full size foundation Plate loading test

Firm soil
Bulb of pressure

Soft layer

Rigid base

Figure 10.25 Illustration of how a plate loading test may give misleading results

A reasonable approximation of modulus of subgrade reaction ks can be obtained from the allowable
soil pressure gan according to Bowles (1977). This way is presented on the assumption that the
allowable soil pressure is based on some maximum amount of settlement s, including a factor of
safety FS. Accordingly, the modulus of subgrade reaction ks is given by

k,=F s Jar (10.119)
S
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As an example, the modulus of subgrade reaction ks [KN/m?] for a settlement of s = 0.0254 [m] and a
factor of safety FS = 3 can be taken as

Qan
k. = =12 10.120
=3 0.0254 0 Ga ( )

In case of carrying out the analysis with constant modulus of subgrade reaction, it is recommended
to determine the modulus of subgrade reaction from settlement calculation. More complicated
analysis for irregular foundation on variable moduli of subgrade reactions is available in ELPLA.
Furthermore, the moduli of subgrade reactions can be improved through the calculated contact
pressures and settlements by iteration.

The following Table 10.4 shows the approximate average values of ks according to Wolfer (1978).
These values may be used only for primary calculation.

Table 10.4  Typical average values of moduli of subgrade reactions ks for selected soils

. Modulus of subgrade reaction
Type of soil ks [KN/mS]

Peat 5000 - 10000
Fill of sand and gravel 10000 - 20000
Wet clayey soil 20000 - 30000
Moistured clay 40000 - 50000
Dry clay 60000 - 80000
Hard dry clay 100000
Coarse sand 80000 - 100000
Coarse sand + small amount of gravel 80000 - 100000
Fine gravel + small amount of gravel 80000 - 100000
Middle size gravel + fine sand 100000 - 120000
Middle size gravel + coarse sand 120000 - 150000
Large size gravel + coarse sand 150000 - 200000
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10.14.6 Allowable bearing capacity of the soil gai

The value of allowable bearing capacity of the soil is based on theoretical as well as experimental
investigation. Such a value usually includes a factor of safety of 3 (quit = 3 qgan). This indicates that
the design loads used in establishing the bearing capacity area of the foundation must be service loads

with no reduction.

Approximate allowable bearing capacity gan of common types of soils are listed in Table 10.5

according to Bakhoum (1986) and can be taken for primary calculations.

Table 10.5  Approximate allowable bearing capacity qu: of common types of soils

. Allowable bearing capacity

Type of soil G [KN/M?]
Noncohesive soil
Loose sand 100
Medium sand 200
Dense sand 500
Hard rock 5000
Cohesive soil
Soft-medium clay 90
Stiff clay 150
Very stiff clay 300
Hard clay 500
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10.14.7 Settlement reduction factor o

From experience the real consolidation settlements are different from those calculated. Settlements s
are multiplied by a factor o according to German standard DIN 4019, page No. 1. According to this
standard, the following reduction factors in Table 10.6 can be applied:

Table 10.6  Reduction factors a according to DIN 4019, page No. 1

Soil type o
Sand and silt 0.66
Normally and slightly over consolidated clay 1.0
Heavily over consolidated clay 05-1

In GEO Tools, the moduli of compressibility Es and Ws are divided by a as follows

E -5

o (10.121)
W, = W,

o

In the final result, this process is equivalent to the following equation

S=as (10.122)
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