9-Settlements of Footing Groups by the Program *GEO Tools*

Mahmoud El Gendy Mohamed. El Gendy

Copyright © GEOTEC Software Inc. Canada Tele.:+1(587) 332-3323 geotec@geotecsoftware.com www.geotecsoftware.com

Settlements of Footing Groups

C	Content Page		
9	Settle	ements of Footing Groups	6
	9.1	ntroduction	6
	9.2	Preliminary Calculations	7
	9.2.1	Determining the overburden pressure q_v and the average unit weight of t	the soil γ_F 7
	9.2.2	Determining the mean soil pressure <i>q</i> ₀	8
	9.2.3	Determining the self-weight of the footing P_E	9
	9.2.4	Bilinear deformation behavior of the subsoil	11
	9.2.5	Determining the limit depth z_g of the settlement influence	12
	9.2.6	Variable foundation levels by neighboring footings	15
	9.3	Settlements of loaded areas	16
	9.3.1	Settlement at a depth z due to a loaded area	16
	9.3.2	Settlement of multi-layers due to a loaded area	17
	9.3.3	Settlement at an interior point of loaded area	
	9.3.4	Settlement at a point outside the loaded area	19
	9.4	Settlement of footings	
	9.4.1	Introduction	
	9.4.2	Determining settlements due to the footing load	
	9.4.3	Settlement at the characteristic point of the footing	23
	9.4.4	Settlements due to pressure overlapping of neighboring footings	24
	9.4.5	Correction of the corner settlements (due to rigidity of the footings)	
	9.5	Modulus of subgrade reaction k_s	
	9.6	Soil properties and parameters	
	9.6.1	Introduction	
	9.6.2	<i>Poisson</i> 's ratio v_s	
	9.6.3	Moduli of compressibility E_s and W_s	
	9.6.4	Moduli of elasticity <i>E</i> and <i>W</i>	
	9.6.5	Settlement reduction factor α	
	9.7	Defining the project data	
	9.7.1	Firm Header	
	9.7.2	Task of the program GEO Tools (Analysis Type)	
	9.7.3	Description of the example	
	9.7.4	Project Identification	
	9.7.5	Main Soil Data	40

9.7.6	Loads and dimensions	41
9.7.7	Soil profile	44
9.8 N	Numerical Examples	46
9.8.1	Introduction	46
9.8.2	Example 1: Double footings (2 isolated footings)	46
9.8.3	Example 2: Two adjacent rectangular footings	62
9.8.4	Example 3: Footing group of six isolated footings	
9.8.5	Example 4: Footing group of nine isolated footings	91
9.8.6	Example 5: Verifying the main modulus of subgrade reaction k_{sm}	
9.8.7	Example 6: Rigid square raft on Isotropic elastic half-space medium	
9.8.8	Example 7: Immediate settlement under an isolated footing	
9.8.9	Example 8: System of rigid centrally loaded square plates	
9.9 F	References, codes and recommendations	164

Preface

In 1961, *Kany* proposed for the first time at the *LGA* Soil Mechanics Institute the use of electronic computing systems for settlement calculations. For this purpose, a computer program was developed for the ZUSE Z 23 electronic computer, and it was presented at the German Soil Mechanics Conference in Berlin in 1964. The first detailed program documentation was published by *LGA* Nuremberg in 1966 (2nd edition 1972) [9].

After the development of computer technology, this program was rewritten in FORTRAN IV (1976, 1973) considering additional effects on the analysis such as reloading of the soil behavior, the limit depth of the soil, temperature change, and soil lowering.

After retirement, *Kany* established a private firm, *GEOTEC* and developed a series of *GEOTEC* programs. The main programs of *GEOTEC* were *SETZ* (Settlement of Footing Groups), *ELBAL* (Elastic Beam Foundation), *STPLA* (Analysis of Rigid Slab) and *ELPLA* (Analysis of Elastic Slab).

In 1996, the program *SETZ* was started by Prof. *Kany* was redeveloped with the help of Prof. *El Gendy* as version 5.0 of the *SETZ* [26]. At that time, *SETZ* was executable on the IBM compatibles with the MS-DOS operating system. The graphics programs were designed for the HP7475A plotter from Hewlett-Packard with the widely used HPGL graphics language.

After the death of Prof. *Kany*, Prof. *M. El Gendy* and Dr. *A. El Gendy* further developed the program to meet the needs of practice. They inserted the present settlement calculation of footing groups in the option "9- Settlements of footing groups" in program *GEO Tools*. In addition to the settlement calculation of footing groups in *GEO Tools*, various Geotechnical problems are also presented.

Calculation of the settlements of footings by the program GEO Tools

Preliminary remarks

The calculation option "9- Settlements of footing groups" in *GEO Tools* program is used to calculate the settlements and tilting of groups of rigid centrally loaded rectangular footings on stratified subsoil. The settlements are calculated for bilinear deformation behavior of the soil according to the theory of elasticity. The settlements at 4 corner points and at the middle of the footing are calculated. For each layer, Modulus of Compressibility for loading and reloading can be defined. The self-weight of the footings and the foundation depth of the footings are considered. Height differences in the footing bases are also considered. If desired, the subsoil stresses and the limit depths of the settlements can be determined. The calculations are based on DIN 4019.

Calculation of foundation settlements using the *GEO Tools* described in this book can also be calculated using the *ELPLA* program and the same results can be obtained. *GEO Tools* is a simple user interface program and requires little information to define a problem. It is preferable to use it for a simple footing geometry. In addition, *ELPLA* can read data files of a settlement problem that are defined by *GEO Tools*. With some modifications to this data, the user can recalculate the problem by *ELPLA*.

9 Settlements of Footing Groups

9.1 Introduction

The calculation of the settlements for practical construction tasks requires a considerable amount of time and money in the case of extensive structures. On the other hand, for the processing of foundation engineering tasks, results are often required quickly for which the person responsible does not have the time required for manual calculations, or at least not for extensive comparison calculations with different soil pressures and foundation depths.

The settlement calculations included in the *GEO Tools* program system under the designation "Settlement of footing groups" are explained and presented below with different practical examples. *GEO Tools* was developed for the electronic calculation of the settlements of a group of rectangular and centrally loaded isolated footings on any stratified subsoil.

Based on DIN 4019, Part 1 and Part 2 [8] and the EVB [24], the settlements are determined considering the pressure overlap of neighboring footings according to the theory of the elastically isotropic half-space and Hooke's law of deformation. It is also possible to examine the dependencies of the settlements of the footing dimensions and foundation depths for each footing. The self-weight of the footing, which depends on the footing thickness and dimensions, is also considered.

Due to the mutual influence, tilting and torsion of the footings occur despite the central load. These can be examined as the settlements are calculated at the 4 corners and at the middle of each footing.

9.2 Preliminary Calculations

9.2.1 Determining the overburden pressure q_v and the average unit weight of the soil γ_F

For the calculation of the settlements some intermediate values are needed, which must be determined first. The overburden pressure q_v [kN/m²] by the earth load removed during the excavation pit results from the unit weights γ_i [kN/m³] of $n_{z.F}$ layers lying above the foundation depth and the layer thicknesses h_i [m] according to the formula

$$q_{v} = \sum_{i=1}^{i=n_{z,F}} (\gamma_{i} h_{i})$$
(1)

The average unit weight $\gamma_F [kN/m^3]$ of the soil above the foundation depth as a weighted average in the area from the original ground surface level to the depth $t_F [m]$ below the ground surface is obtained by

$$\gamma_F = \frac{q_v}{t_F} = \frac{\sum_{i=1}^{i=n_{z,F}} (\gamma_i \ h_i)}{t_F}$$
(2)

Figure 9.1 shows the chosen designations of the calculation

Figure 9.1 Determining overburden pressure q_v

Foundation depth t_F is given by

$$t_F = t_k + t_E \tag{3}$$

With the footing thickness t_E and the depth of the top edge of the footing t_k , and by comparing the bottom edges of the layers with the foundation depth t_F , it is determined in which layer *i*, possibly divided by the foundation depth, the foundation depth lies.

In addition, the average unit weight γ_E of the soil along the footing thickness t_E is used for the bearing capacity calculations. For this purpose, the overburden pressure q_k at the footing surface (depth t_k below ground level) is first determined using the formula

$$q_k = \sum_{i=1}^{i=n_{z,k}} (\gamma_i \ h_i) \tag{4}$$

where $n_{z,k}$ means the number of the possibly divided layer in or under which the footing surface (depth t_k) lies. Then the unit weight of the soil along the footing thickness is given by

$$\gamma_E = \frac{q_v - q_k}{t_E} \tag{5}$$

9.2.2 Determining the mean soil pressure q_o

A distinction is made as to whether the base of the footing is above or below the groundwater level.

9.2.2.1 The base of the footing is above the groundwater level

For footings without groundwater pressure, the mean soil pressure $q_o [kN/m^2]$ is determined from the total load P [kN] = applied load P_A + footing weight P_E :

$$q_o = \frac{P_A + P_E}{A \times B} = \frac{P}{A \times B}$$
(6)

Overburden pressure, which is reloading pressure

$$q_{\nu} = \gamma_F t_F \tag{7}$$

The reduced soil pressure is then the loading pressure

$$q_E = q_o - q_v \tag{8}$$

Equation 8 also considers the influence of the reloading $q_v = \gamma_F \times t_F$ of the subsoil. This reloading of the subsoil is almost always present when the base of the footing at depth t_F is below the original ground level, i.e. the existing ground level before excavation.

If the reloading part (overburden pressure) is not available, the following applies

$$q_E = q_o \tag{9}$$

where:

q_o	Soil pressure on the footing base	$[kN/m^2]$
q_v	Overburden pressure on the footing base	$[kN/m^2]$
q_E	Loading part on the footing base	$[kN/m^2]$
q_w	Groundwater pressure on the footing base	$[kN/m^2]$

Р	Total load on the footing base	[kN]
	(Including the footing weight)	
P_A	Applied load on the footing	[kN]
P_E	Self-weight of the footing	[kN]
A	Footing dimension in X direction	[m]
В	Footing dimension in Y direction	[m]
$A \times B$	Ap Area of the footing	[m ²]
t_F	Foundation depth	[m]
	(Depth of the foundation level below the original g	round surface level)
γ_i	Unit weight of the soil above the foundation level	[kN/m ³]
γ_F	Average unit weight of the soil	[kN/m ³]
	above the foundation level (Eq. 2).	

9.2.2.2 The base of the footing is below the groundwater level

In the case of footings whose base (depth t_F [m] below the ground level) lies below the groundwater level (depth t_W [m] below ground level), the footings will be exposed to an additional negative pressure q_w on the footing base (area $A \times B$) due to the buoyancy P_W [kN]

$$q_W = \frac{P_W}{A_P} = (t_F - t_W) \gamma_w \tag{10}$$

where γ_w is the unit weight of the water = 9.81 [kN/m³].

Equation 11 is then used instead of Eq. 8

$$q_E = q_o - q_W - q_v \tag{11}$$

9.2.3 Determining the self-weight of the footing P_E

Because the foundation dimensions A, B and footing thickness d change the self-weight P_E of the footing, P_E can be calculated automatically. To consider the self-weight of the footing, approximately block-shaped footings with the base area $A \times B$, the thickness $d = t_E$ and the unit weight of the footing concrete γ_b [kN/m³] are used.

Then the footing weight P_E is

$$P_E = A B t_E \gamma_b \tag{12}$$

where:

- γ_b Unit weight of the footing concrete (by default 25 [kN/m³]) [kN/m³]
- t_F Foundation depth under the ground surface $t_F = t_E + t_K$ [m]
- t_E Embedment thickness of the footing (= Footing thickness) [m]
- t_K Basement depth (= Depth of the footing surface under the ground surface) [m]

If $\gamma_b = 0$ is defined in the data, the footing weight is zero $P_E = 0$ (Self-weight of the footing is neglected).

9.2.4 Bilinear deformation behavior of the subsoil

A simplified way was supposed to improve the deformation behavior of the soil by dividing the stress settlement curve into two regions, Figure 9.2. In the first region the ground will settle until reaching an overburden load q_v according to the Modulus of Compressibility W_s . In the second region after reaching the load q_v the ground will settle more under load q according to the Modulus of Compressibility E_s until reaching the total load q_o .

Figure 9.2 Load settlement diagram (bilinear relation)

The bilinear relation of the soil deformation may be taken into consideration as follows. The settlement s_o of the footing can be derived from two variations such that (Figure 9.2)

$$s_o = s_W + s_E \tag{13}$$

This settlement s_o is due to the total contact pressure q_o on the footing, which is given by

$$q_o = q_v + q_E \tag{14}$$

The flexibility coefficients of the soil are determined from these settlements with the mean contact pressure q_o on the footing.

where:

SE	Settlement due to loading (Modulus of Compressibility E_s)	[m]
SW	Settlement due to reloading (Modulus of Compressibility E_W)	[m]
S_{O}	Total settlement of the footing	[m]

9.2.5 Determining the limit depth z_g of the settlement influence

9.2.5.1 General

Settlement observations at ground levels and at the footing base of buildings have shown that, from a certain depth z_g below the building, there are no more deformations despite the presence of additional stresses in the subsoil (DIN standards). To obtain this depth, there are two different criteria:

a- The limit depth z_g of the settlement influence depends on the width *B* of the building.

$$z_g = c_s B \tag{15}$$

Previously the value $c_s = 2$ was assumed. However, this criterion does not cover the building load and is only rarely used today.

-b The limiting depth z_g of the settlement influence depends on the ratio

$$c_s = \frac{\sigma_z}{\sigma_{z\gamma}} \tag{16}$$

where:

C_S	Limit depth ratio	[-]
σ_{z}	Stress in soil from footing load (loading part)	$[kN/m^2]$
$\sigma_{z.\gamma}$	Stress from soil weight at depth z	[kN/m ²]

This criterion was introduced for the first time in the regulations of the Soviet standard, but later also in the DIN standards and recommendations EVB (1993), whereby the limit depth z_g is assumed to be the depth at which the value $c_s = 0.2$ is reached. Investigations by *Amman/ Breth* (1972) show, however, that the value can increase to $c_s = 0.8$. This applies to heavily loaded and coarse-grained soils. In DIN 4019 Part 1 $c_s = 0.2$ is recommended.

9.2.5.2 Calculation method

The user can already take method a) into account when defining data. Of the specified criteria a) and b), the second method is used in the program at the user's request. For this purpose, the limit depth ratio $0 < c_s < 1$ is defined with the data.

9.2.5.3 Iterative calculation method

First, the soil weight $\sigma_{z,\gamma}$ at different depths and then the stresses σ_z from the footing load under the footing are determined. If the limit depth is reached, the iteration is aborted.

The stress σ_z from footing load in the depth z of layer *i* is obtained as shown in Figure 9.3 as follows

$$\sigma_z = \sigma_{zE} + \sum \sigma_{zkE} \tag{17}$$

The stress from the soil weight $\sigma_{z.\gamma}$ at depth z is obtained as a sum

$$\sigma_{z\gamma} = \sum_{i=i_z}^{n_z} \gamma_i \ h_i \tag{18}$$

with these values, according to Eq. 16, the stress ratio is

$$c_s \text{ vorh } = \frac{\sigma_z}{\sigma_{z\gamma}}$$
 (19)

The calculation is carried out in steps downwards, whereby the increment d_z must be specified. $d_z = B/10$ is recommended. The final limit depth value z_g is calculated from the two lowest calculated values by linear interpolation.

$$z_{g} = z_{o} + (c_{s} - c_{o}) \frac{z_{u} - z_{o}}{c_{u} - c_{o}}$$
(20)

where:

 c_s Limit depth ratio = input value

 c_o Stress ratio at the top edge of the layer z_o (strip of thickness d_z) [-] $c_o = \sigma_{z,y,o} / \sigma_{z,o}$

 c_u Stress ratio c_u at the bottom edge of the layer z_u (strip of thickness d_z) [-]

 $\mathbf{c}_u = \sigma_{z.\gamma.u} / \sigma_{z.u}$

Figure 9.3 Example for determining the limit depth z_g under a footing (No stress overlap from neighboring footings)

9.2.6 Variable foundation levels by neighboring footings

Sometimes, by determining the influence of the neighboring footings or the interaction among system of footings, the foundation levels of the footings are variable as shown in Figure 9.4. In this case, the foundation levels of the footings must be related to a specified datum H_m .

The z-value of flexibility coefficient for any soil layer under the footing can be expressed by

$$z_{ikl} = (z_{il} - t_{fi}) - H_{mi} + H_{mk}$$
(21)

It should be noticed that the foundation level H_m under the specified datum is negative.

Figure 9.4 Different foundation depths for neighboring footings

9.3 Settlements of loaded areas

9.3.1 Settlement at a depth z due to a loaded area

According to *Steinbrenner* (1934), the settlement s_h at a depth z under the corner of the loaded area on the surface of the elastic layer of thickness h (Figure 9.5) is given by

$$s_{h} = \frac{q (1 - v_{s}^{2})}{2 \pi E} \left(b \ln \frac{(c-a) (m+a)}{(c+a) (m-a)} + a \ln \frac{(c-b) (m+b)}{(c+b) (m-b)} \right) - \frac{q (1 - v_{s} - 2 v_{s}^{2})}{2 \pi E} \left(z \tan^{-1} \frac{a b}{z c} \right)$$
(22)

where c and m in the Eq. 22 are defined by the following expressions:

$$c = \sqrt{a^2 + b^2 + z^2}$$
 und $m = \sqrt{a^2 + b^2}$

where in Eq. 22:

S_h	Settlement of the corner of a loaded area	[m]
a,b	Dimensions of the loaded area	[m]
Ζ	Depth of the layer under the ground surface	[m]
q	Intensity of the loaded area at the surface of the elastic layer	$[kN/m^2]$
Ε	Modulus of Elasticity of the soil (unrestrained lateral)	$[kN/m^2]$
v_s	Poisson's ratio of the soil	[-].

Poisson's ratio v_s is considered constant for all soil layers as its value is between 0.3 and 0.5 for most soil types. Then, Eq. 22 is in a simple form for a constant *Poisson's* ratio of the soil

$$s_h = \frac{q}{E} f \tag{23}$$

The settlement factor f, can also be obtained from tables and curve according to *Kany* (1974) as a function of a, b and z.

Figure 9.5 Elastic layer on a rigid base

9.3.2 Settlement of multi-layers due to a loaded area

Obviously, it can generalize this approach to consider multi-layers of soil. Each has different elastic material and thickness as shown in Figure 9.6. The vertical settlement of a layer l in an n layered system is given by

$$s_{l} = q\left(\frac{f^{(l)} - f^{(l-1)}}{E^{(l)}}\right) = q\left(\frac{\Delta f^{(l)}}{E^{(l)}}\right)$$
(24)

where in general:

E_l	Modulus of Elasticity of the <i>l</i> th layer (unrestrained lateral)	$[kN/m^2]$
q	Loaded area at the surface of the elastic layer	$[kN/m^2]$
$\Delta f^{(l)}$	$f^{(l)}$ - $f^{(l-1)}$ Difference in the settlement coefficients f between the	e lower edge
z_l and	upper edge $z_{(l-1)}$ of the <i>l</i> -th layer (with a total of <i>n</i> layers)	

The total settlement for n layered system is

$$s = q \left(\frac{f^{(1)}}{E^{(1)}} + \sum_{l=2}^{n} \frac{\Delta f^{(l)}}{E^{(l)}} \right)$$
(25)

Figure 9.6 Layered system

9.3.3 Settlement at an interior point of loaded area

So far it has been considered the settlement beneath a corner of a loaded area. To find the settlement at any other point, the principle of superposition can be used. The settlement at an interior point of the rectangular loaded area is given by the sum of the settlements at the corners of four sub-loaded areas.

To determine the settlement coefficient $f^{(l)}$ for a layer *l* at an interior point *i* of the rectangular loaded area shown in Figure 9.7, the Formula of *Kany* (1974) can be applied as

$$f^{(l)} = f^{(l)}_{1} + f^{(l)}_{2} + f^{(l)}_{3} + f^{(l)}_{4}$$

$$= \frac{1}{2\pi} \sum_{n=1}^{4} \left[(1 - v_{s}^{2}) \left\{ b_{n} \ln \frac{(c_{n} - a_{n})(M + a_{n})}{(c_{n} + a_{n})(M - a_{n})} + a_{n} \ln \frac{(c_{n} - b_{n})(M + b_{n})}{(c_{n} + b_{n})(M - b_{n})} \right\} + (1 - v_{s} - 2v_{s}^{2}) z_{l} \tan^{-1} \frac{a_{n} b_{n}}{z_{l} c_{n}} \right]$$
(26)

\

It applies to the settlement of a loaded load area with dimensions *a* and *b*

$$c_n = \sqrt{a_n^2 + b_n^2 + z_l^2}$$
 und $M = \sqrt{a_n^2 + b_n^2}$

The value z_l means the level of the lower side of the layer l from the foundation level.

9.3.4 Settlement at a point outside the loaded area

Adding and subtracting corner settlements for four loaded areas can obtain the settlement of any point outside the loaded area as shown in Figure 9.8. First, the settlement s_1 is determined as if the whole area is defined with load q. Then, the settlements due to the two corners of the loaded areas s_2 and s_3 are subtracted. Finally, the settlement s_4 is added since it has been subtracted twice in s_2 and s_3 . Using the same process, the settlement coefficient $f^{(l)}$ for a layer l at an exterior point i of the rectangular loaded area shown Figure 9.8 is given by

$$f^{(l)} = f^{(l)}_{1} - f^{(l)}_{2} - f^{(l)}_{3} + f^{(l)}_{4}$$
(27)

Figure 9.8 Superposition of four loaded areas to find the settlement at an exterior point *i*

For any point *i* of coordinates (ζ, η) inside or outside the loaded area $a \times b$ (Figure 9.9), the settlement coefficient $f^{(l)}$ can be obtained according to *Poulos/ Davis* (1974) using the principle of superposition by the following general Equation:

$$f^{(l)} = f(\zeta, \eta) - f(\zeta - a, \eta) - f(\zeta, \eta - b) + f(\zeta - a, \eta - b)$$
(28)

Figure 9.9 Superposition of four loaded areas to find the settlement at any point *i*

9.4 Settlement of footings

9.4.1 Introduction

GEO Tools program can be used to calculate the influence of neighboring footings on rectangular footings on any layered subsoil. When calculating the settlement, a distinction must be made between the settlements from the loading s_E and those from reloading s_W of the subsoil. These arise from the stresses σ_z in the subsoil due to the load *P* of the footing to be examined *i* (applied load on the footing P_A and the self-weight of the footing P_E) and from the stress due to neighboring footings *k*.

9.4.2 Determining settlements due to the footing load

When determining the settlements s_o due to the footing load P

$$P = P_A + P_E \tag{29}$$

of the footing *i* (dimensions *A* and *B*), three cases must be distinguished:

Fall 1: Overburden pressure $q_v = 0$ und soil pressure $q_E = q_o - q_w$ (no overburden)

This case occurs when the depth of footing surface is $t_K = 0$ and the foundation depth is $t_E = 0$. Here the settlements alone s_o is obtained from the deformations s_E due to loading modulus E_s

$$s_o = s_E \tag{30}$$

Fall 2:Overburden pressure $q_v \neq 0$, soil pressure $q_E \leq 0$
(no loading, because of overburden pressure \geq Total loading)

Here the settlements alone s_W is obtained from the deformations s_W due to reloading modulus W_s .

$$s_o = s_W \tag{31}$$

Fall 3:Overburden pressure $q_v \neq 0$ and soil pressure $q_E > 0$
(General case: Loading- and reloading)

Here, the stress q_v is decisive for the calculation of the settlement s_W due to reloading and the stress q_E for the calculation of the settlement s_E due to loading.

Then the total settlement s_o is

$$s_o = s_W + s_E \tag{32}$$

9.4.3 Settlement at the characteristic point of the footing

The formula of *Steinbrenner* (1934), which is used for the settlement calculation, is valid for surface loadings, in which the surface loading is assumed to be flexible, while the isolated footing can be treated as rigid footing. Therefore, the settlement of the footing is calculated at the characteristic point. *Graßhoff* (1955) defined the characteristic point to be that point of a surface area loaded by a uniformly distributed pressure, where the settlement due to that pressure is identical with the displacement of a rigid footing of similar dimensions and loading. The self-settlement of a footing is determined at the characteristic point ($a_c = 0.87a$ and $b_c = 0.87b$) as shown in Figure 9.10.

Figure 9.10 Characteristic point of the settlement

9.4.4 Settlements due to pressure overlapping of neighboring footings

9.4.4.1 Introduction

Because of the three-dimensional pressure propagation in the subsoil, in addition to the settlements explained in the last section due to load P_i [kN] of the examined footing *i*, in footing groups ($N_P > 1$) there are often significant settlement components from influences of neighboring footings *k*.

9.4.4.2 Settlement from overlapping pressures at the corners of the footing

The neighboring footings k cause additional settlements in the footing i to be calculated due to overlapping pressures. The program can be used to calculate the settlements at the 4 corners of the assumed rigid footing (see sketch for the order of the corners to be calculated).

Top right corner 1, bottom right corner 2, bottom left corner 3 and top left corner 4

The procedure for determining the influence of the load P_k on the calculation point *i* is as follows:

At point k with the coordinates x_k , y_k (Figure 9.11) and the applied height H_m under a common fixed datum is a footing with a total load P_k [kN] and an earth load P_{KV} (Overburden pressure) that relieves the subsoil before the start of construction by removing it:

$$P_k = P_{Ak} + P_{Ek} \tag{33}$$

To explain the method for calculating the settlements s_{ik} from pressure overlaps of neighboring footings k, the settlement influence originating from footing k is to be examined for footing i. This is done by the superposition using Eq. (28) according to Figure 9.9.

Experience shows that when calculating the influence of neighboring footings, there are only significant settlement influences if the footing k is not very far away from studied point i.

A neighboring footing k is shown in Figure 9.11. This footing causes an additional settlement component on the examined footing i. The influence on the settlement is to be examined below.

b) Cross-section of the footing to be examined with the neighboring footing

First of all, for the 4 corner points of the footing to be examined, the settlement component $s_{il,D}$ is calculated from the pressure overlap of the neighboring footing. With the dimensions A_k , B_k of the neighboring footing k, the settlement of the *l*-th layer of the footing i due to the influence of neighboring footing k is determined based on Eq. (28) using the principal of superposition:

The total settlement s_{il} of the footing *i* at the corner point *l* is

$$s_{il} = sl' = s_{i.o} + s_{il.D}$$
(34)

where:

*s*_{*i.o*} Settlement at the characteristic point of footing *i* due to stress from examined footing *i*

 $S_{il.D}$ Part of settlement at the corner *l* of the examined footing *i* from the pressure overlap of the neighboring footing *k*

9.4.5 Correction of the corner settlements (due to rigidity of the footings)

To obtain rigid settlement at corners 1 ... 4 from the influence of the neighboring footings considering the rigidity of the footings, the settlements are compensated. For this purpose, the following arithmetic operations are carried out:

The average settlement s_m is calculated with the basic settlements $s1' \dots s4'$:

$$s_m = (s1' + s2' + s3' + s4') / 4$$

This allows the following intermediate results to be calculated:

D1	$= s_m - s1'$
D2	$= s_m - s2'$
D3	$= s_m - s3'$
D4	$= s_m - s4'$

and

D1.3 = (| D1 | + | D3 |) / 2D2.4 = (| D2 | + | D4 |) / 2

With these intermediate results, the correction settlements s1.D, s2.D, s3.D, s4.D at the corners 1 ... 4 of the calculated footing can be determined. There are four different cases:

a) If $s_1 > s_3$, then becomes $s_1.D = s_m + D_{1.3}$ $s_3.D = s_m - D_{1.3}$

- 9.26 -

b)	If $s1 \le s3$, then becomes	<i>s</i> 1.D	$= s_m - D1.3$
		s3.D	$=$ s_m + D1.3
c)	If $s_2 > s_4$, then becomes	<i>s</i> 2.D	$= s_m + D2.4$
		s4.D	$= s_m - D2.4$
d)	If $s2 \le s4$, then becomes	s2.D	$= s_m - D2.4$
		s4.D	$= s_m + D2.4$

9.5 Modulus of subgrade reaction k_s

Modulus of subgrade reaction k_s [kN/m³] for footing *i* is determined from

$$k_s = \frac{q_o - q_w}{s_m} \tag{35}$$

where:

 q_o = Contact pressure [kN/m²] under the footing *i*

 q_w = Ground water pressure [kN/m²] under the footing *i*

 s_m = Average settlement [m] of the footing *i* from the load of the footing *i* and from the influence of the loads of (N_{FD} -1) neighboring footings.

 N_{FD} = The number of footings in the system of footing group.

The settlement s_m is determined by the sum of the settlement portions of N_{FD} footings. This simplification is the basis of the modulus of subgrade reaction method, in which the settlement of field *i* depends only on the loading of the same field *i*.

In the program, the moduli of subgrade reactions for all N_{FD} footings of a system of footings can be determined.

9.6 Soil properties and parameters

9.6.1 Introduction

The elastic properties of the soil are defined in GEO Tools by the following two different parameters:

- 1. Modulus of Compressibility $E_s(1/m_v)$
- 2. Modulus of Elasticity *E*

 E_s [kN/m²] is the reciprocal value of the coefficient of volume change m_v [m²/kN]

For each soil layer, the input data maybe are

Depth of the layer from the ground surface	Z	[m]
Modulus of Compressibility for loading (constant in a layer t)	E_s	$[kN/m^2]$
Modulus of Compressibility for reloading (constant in a layer)	W_s	$[kN/m^2]$
Modulus of Elasticity for loading (constant in a layer)	Ε	$[kN/m^2]$
Modulus of Elasticity for reloading (constant in a layer)	W	$[kN/m^2]$
Unit weight of the soil	γ_s	$[kN/m^3]$
Poisson's ratio of the soil	\mathbf{v}_s	[-].

The following sections describe these properties of the soil. Furthermore, the soil characteristics for different soil types are listed in tables, which may be used in the primary analysis.

If the Moduli of Compressibility E_s and W_s are determined from a confined compression test, *Poisson*'s ratio will be taken $v_s = 0.0$. If the other Moduli of Elasticity E and W are used in the equations derived in the previous section, *Poisson*'s ratio will be taken to be $v_s \neq 0$. In general, *Poisson*'s ratio ranges in the limits $0 < v_s < 0.5$.

9.6.2 *Poisson*'s ratio v_s

Poisson's ratio v_s for a soil is defined as the ratio of lateral strain to longitudinal strain. It can be evaluated from the Triaxial test. *Poisson*'s ratio v_s can be determined from at-rest earth pressure coefficient K_o as follows

$$v_s = \frac{K_o}{1 + K_o} \tag{36}$$

Some typical values for *Poisson*'s ratio are shown in Table 9.1 according to *Bowles* (1977). *Poisson*'s ratio in general ranges between 0 and 0.5.

Type of soil	Poisson's ratio
Type of som	v_s [-]
Clay, saturated	0.4 - 0.5
Clay, unsaturated	0.1 - 0.3
Sandy clay	0.2 - 0.3
Silt	0.3 - 0.35
Sand, dense	0.2 - 0.4
Sand, coarse (void ratio = $0.4 - 0.7$)	0.15
Sand, fine grained (void ratio = $0.4 - 0.7$)	0.25
Rock	0.1 - 0.4

Table 9.1Typical range of values for *Poisson*'s ratio v_s according to *Bowles* (1977)

9.6.3 Moduli of compressibility E_s and W_s

The equations derived in the previous section for calculation of flexibility coefficients require either the moduli of compressibility for loading E_s and reloading W_s or moduli of elasticity for loading Eand reloading W for the soil. The yielding of the soil is described by these elastic moduli. The moduli of compressibility E_s and W_s can be determined from the stress-strain curve through a confined compression test (for example Odometer test) as shown in Figure 9.12. In this case, the deformation will occur in the vertical direction only. Therefore, if the moduli of compressibility E_s and W_s are determined from a confined compression test, *Poisson*'s ratio will be taken $v_s = 0.0$. If the other moduli of elasticity E and W are used in the equations derived in the previous section, *Poisson*'s ratio will be taken to be $v_s \neq 0$. In general, *Poisson*'s ratio ranges in the limits $0 < v_s < 0.5$.

Figure 9.12 Stress-strain diagram from confined compression test (Oedometer test)

The modulus of compressibility E_s [kN/m²] (or W_s [kN/m²]) is defined as the ratio of the increase in stress $\Delta \sigma$ to decrease in strain $\Delta \varepsilon$ as (Figure 9.12)

$$E_{s} = \frac{\Delta \sigma'}{\Delta \varepsilon'} = \frac{\sigma_{om} - \sigma_{v}}{\Delta \varepsilon'}$$

$$W_{s} = \frac{\Delta \sigma''}{\Delta \varepsilon''} = \frac{\sigma_{v}}{\Delta \varepsilon''}$$
(37)

where

$\Delta \sigma'$	Increase in stress from σ_v to σ_{om}	$[kN/m^2]$
σ_v	Stress equal to overburden pressure	$[kN/m^2]$
σ_{om}	Stress equal to expected average stress on the soil	$[kN/m^2]$
Δε΄	Decrease in strain due to stress from σ_v to σ_{om}	[-]
Δσ΄΄	Increase in stress due to reloading	$[kN/m^2]$
Δε΄΄	Decrease in strain due to reloading	[-].

The moduli of compressibility may be expressed in terms of either void ratio or specimen thickness. For an increase in effective stress $\Delta\sigma$ to decrease in void ratio Δe , the moduli of compressibility E_s [kN/m²] and W_s [kN/m²] are then expressed as

$$E_{s} = \frac{1}{m_{v}'} = \frac{\Delta\sigma'(1+e_{o}')}{\Delta e'}$$

$$W_{s} = \frac{1}{m_{v}''} = \frac{\Delta\sigma''(1+e_{o}'')}{\Delta e''}$$
(38)

where

m'_v	Coefficient of volume change for loading	$[m^2/kN]$
m''_v	Coefficient of volume change for reloading	$[m^2/kN]$
e'o	Initial void ratio for loading	[-]
e''o	Initial void ratio for reloading	[-]
$\Delta e'$	Decrease in void ratio due to loading	[-]
$\Delta e^{\prime\prime}$	Decrease in void ratio due to reloading	[-].

The values of E_s and W_s for a particular soil are not constant but depend on the stress range over which they are calculated. Therefore, for linear analysis it is recommended to determine the modulus of compressibility for loading E_s at the stress range from σ_v to σ_{om} , while that for reloading W_s for a stress increment equal to the overburden pressure σ_v . On the other hand, since the modulus of compressibility increases with the depth of the soil, for more accurate analysis the modulus of compressibility may be taken increasing linearly with depth. Also, according to *Kany* (1976) the moduli of compressibility E_s and W_s may be taken depending on the stress on soil. In these two cases, the moduli of compressibility E_s and W_s can be defined in the analysis for several sub-layers instead of one layer of constants E_s and W_s .

As a rule, before the analysis the soil properties are defined through the tests of soil mechanics, particularly the moduli of compressibility E_s and W_s . For precalculations Table 9.2 for specification of the modulus of compressibility E_s can also be used.

According to *Kany* (1974), the values of W_s range between 3 to 10 times of E_s . From experience, the modulus of compressibility W_s for reloading can be taken 1.5 to 5 times as the modulus of compressibility E_s for loading.

For geologically strongly preloaded soil, the calculation is often carried out only with the modulus of compressibility for reloading W_s . In this case, the same values are defined for E_s and W_s .

Matching with the reality, satisfactory calculations of the settlements are to be expected only if the soil properties are determined exactly from the soil mechanical laboratory, field tests or back calculation of settlement measurements.

Table 9.2 shows mean moduli of compressibility E_s for various types of soil according to EAU (1990).

Type of soil	Modulus of compressibility E_s [kN/m ²]
Non-cohesive soil	
Sand, loose, round	20000 - 50000
Sand, loose, angular	40000 - 80000
Sand, medium dense, round	50000 - 100000
Sand, medium dense, angular	80000 - 150000
Gravel without sand	100000 - 200000
Coarse gravel, sharp edge	150000 - 300000
Cohesive soil	
Clay, semi-firm	5000 - 10000
Clay, stiff	2500 - 5000
Clay, soft	1000 - 2500
Boulder clay, solid	30000 - 100000
Loam, semi-firm	5000 - 20000
Loam, soft	4000 - 8000
Silt	3000 - 10000

Table 9.2 Mean moduli of compressibility E_s for various types of soil

9.6.4 Moduli of elasticity *E* and *W*

The equations derived in the previous section to determine the flexibility coefficients are used with moduli of elasticity *E* and *W* for unconfined lateral strain with *Poisson*'s ratio $v_s \neq 0$. It must be pointed out that, when defining *Poisson*'s ratio by $v_s = 0$ (limit case), the moduli of compressibility E_s and W_s for confined lateral strain (for example from Odometer test) also can be used.

The modulus of elasticity is often determined from an unconfined Triaxial compression test, Figure 9.13. Plate loading tests may also be used to determine the in-situ modulus of elasticity of the soil as elastic and isotropic.

Figure 9.13 Modulus of elasticity *E* from Triaxial test

It is possible to obtain an expression for the moduli of elasticity E and W in terms of moduli of compressibility E_s , W_s and *Poisson*'s ratio v_s for the soil as

$$E = E_{s} \frac{1 - v_{s} - 2v_{s}^{2}}{1 - v_{s}}$$

$$W = W_{s} \frac{1 - v_{s} - 2v_{s}^{2}}{1 - v_{s}}$$
(39)

The above equation shows that:

- In the limit case $v_s = 0$ (deformation without lateral strain), the values of *E* and *E_s* (also *W* and *W_s*) are equal

- In the other limit case $v_s = 0.5$ (deformation with constant volume), the moduli of elasticity will be $E = 0 \times E_s$ and $W = 0 \times W_s$. In this case, only the immediate settlement (lateral deformation with constant volume) can be determined.

Table 9.3 shows some typical values of modulus of elasticity according to *Bowles* (1977).

Type of soil	Modulus of elasticity		
Type of son	$E [kN/m^2]$		
Very soft clay	3000 - 3000		
Soft clay	2000 - 4000		
Medium clay	4500 - 9000		
Hard clay	7000 - 20000		
Sandy clay	30000 - 42500		
Silt	2000 - 20000		
Silty sand	5000 - 20000		
Loose sand	10000 - 25000		
Dense sand	50000 - 100000		
Dense sand and gravel	80000 - 200000		
Loose sand and gravel	50000 - 140000		
Shale	140000 - 1400000		

Table 9.3Typical range of moduli of elasticity *E* for selected soils

9.6.5 Settlement reduction factor α

From experience the real consolidation settlements are different from those calculated. Settlements *s* are multiplied by a factor α according to German standard DIN 4019, page No. 1. According to this standard, the following reduction factors in Table 9.4 can be applied:

Table 9.4Reduction factors α according to DIN 4019, page No. 1

Soil type	α
Sand and silt	0.66
Normally and slightly over consolidated clay	1.0
Heavily over consolidated clay	0.5 - 1

In GEO Tools, the moduli of compressibility E_s and W_s are divided by α as follows

$$\overline{E}_{s} = \frac{E_{s}}{\alpha} \\
\overline{W}_{s} = \frac{W_{s}}{\alpha}$$
(40)

In the final result, this process is equivalent to the following equation

$$\overline{S} = \alpha \, s \tag{41}$$
9.7 Defining the project data

9.7.1 Firm Header

When printing the results, the main data (firm name) are displayed on each page at the top in two lines or in graphic presentation at the identification box. Firm name can be defined, modified, and saved using the "Firm Header" Option from the setting Tab (see Figure 9.14).

Firm Header		Х
Firm Header:		
1. Head	GEOTEC Software Inc., Calgary AB, Canada T3E 7Y7	
2. Head	PO Box 14001 Richmond Road PO, Tele.:+1(587) 332-3323	
<u>S</u> ave	<u>C</u> ancel <u>D</u> efault parameters <u>H</u> elp	

Figure 9.14 Firm Header

9.7.2 Task of the program GEO Tools (Analysis Type)

The program *GEO Tools* can be used to analyze various problems in Geotechnical Engineering for shallow and deep foundations, Figure 9.15.

Figure 9.15 Problem type

According to the main menu in Figure 9.16 the following geotechnical problems can be calculated for shallow foundations:

- 1. Stresses in soil
- 2. Strains in soil
- 3. Displacements in soil
- 4. Consolidation settlement
- 5. Degree of consolidation
- 6. Time-settlement curve
- 7. Displacements of rigid raft
- 8. Consolidation of rigid raft
- 9. Settlements of footing groups
- 10. Analysis of a beam foundation
- 11. Modified Cam-Clay Model

Problem type	×
Select option to calculate:	
○ 01- Stresses in soil	
O 02- Strains in soil	
O 03-Displacements in soil	
O 04- Consolidation settlement	
O 05- Degree of consolidation	
O 06- Time-settlement curve	
O 07-Displacement of rigid raft	
O 08- Consolidation of rigid raft	
O9- Settlements of footing groups	
O 10-Analysis of a beam foundation	
11-Modified Cam-Clay Model	
Help Save As Load < Back Next >	<u>S</u> ave

Figure 9.16 Problem type for shallow foundation

In menu of Figure 9.16, select the option:

09- Settlement of footing groups

The following paragraph describes how to determine the settlement of footing groups by the program *GEO Tools* with an example.

9.7.3 Description of the example

The settlements for two footings, including the influence of the overlapped stress of footings, are determined. In addition, the limit depth of the soil under the footings is determined. Data to be defined are dimensions of footings and subsoil.

9.7.4 Project Identification

Example 0: Test example for two footings (2 isolated footings) File name: SZ5

In the program, it must be distinguished between the following two data groups:

- 1 System data (For identification of the project that is created and information to the output for the printer).
- 2 Soil data (Soil properties and so on).

The defining input data for these data groups is carried out as follows:

After clicking on the "Project Identification" Option, the following general project data are defined (Figure 9.17):

Title:	Title label
Date:	Date
Project:	Project label

Project Ide	entification X
Project Id	dentification:
Title	Test example for two footings
Date	19-01-2018
Project	Brückenkopf Bergtal (Example 0)
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s

Figure 9.17 Project Identification

9.7.5 Main Soil Data

After clicking the "Settlements of footing groups" option, the following basic subsoil data is defined (Figure 9.18):

Limit depth:

D_z	Strip thickness for depth by iteration	[m]
C_s	Standard ratio of limit depth ($0 \le C_s \le 1$)	[-]

Main Soil Data:

α	Settlement reduction factor ($\alpha \le 1$)	[-]
Tw	Groundwater depth under the ground surface	[m]
γ_b	Unit weight of footing concrete	[kN/m ³]
	(by default $\gamma_b = 25$)	

Figure 9.18 Main Soil Data

9.7.6 Loads and dimensions

The settlements at the corners of the isolated footings depend on the dimensions and the length of the isolated footings in the coordinate system, on the loads and the soil layers. After clicking on the "Loads and dimensions" tab in Figure 9.18, the following table of data in the form of Figure 9.19 is defined. The following data are required for each isolated footing:

Pa	Load on footing	[kN]
Am	Footing length	[m]
Bm	Footing breadth	[m]
Dm	Thickness of the footing	[m]
Tf	Foundation depth	[m]

ß	Rotating angle	[°]
Xm,Ym	Location of the footing center in the coordinate system	[m]
Hm	Height of the base of the footing above the fixed point	[m]

Figure 9.19 Loads and dimensions

Figure 9.20 Plan and section through footings 1 and 2 (Arrangement of the footings in the coordinate system)

9.7.7 Soil profile

After clicking the "Soil profile" tab in Figure 9.19, the subsoil data are defined in (Figure 9.21). Several layers of the soil are defined, data of each layer are:

Ζ	Level of layer under ground		[m]
	(Measured from ground level)		
E_S	Modulus of compressibility for loading		$[kN/m^2]$
	(Constant in layers)		
W_S	Modulus of compressibility for reloading		$[kN/m^2]$
	(Constant in layers)		
v_s	Poisson's ratio	[-]	
γ_s	Unit weight of the soil		[kN/m ³]
BOD	Soil name.		

Constraint moduli with constrained side strain (Moduli of compressibility) *Es* and *Ws* from tests with constrained side strain (e.g. from compression tests) are defined. This means that $v_s = 0$ must be entered as the *Poisson's* ratio.

If other moduli for unconfined lateral strain (moduli of elasticity) *E* and *W* are used, the *Poisson's* ratio $v_s \neq 0$ must be set. In any case, the *Poisson's* ratio of the soil v_s lies within the limits $0 < v_s < 0.5$.

Figure 9.21 Soil profile

9.8 Numerical Examples

9.8.1 Introduction

The application possibilities of the program *GEO Tools* for the settlement calculation of footing groups are presented below in some numerical examples. The examples were carried out to verify and test the application of the proposed procedures outlined in this book.

9.8.2 Example 1: Double footings (2 isolated footings)

File name SZ1

9.8.2.1 Description of the problem

A simple example is presented to demonstrate the use of *GEO Tools*. The footing group shown in Figure 9.22 consists of two footings standing on a subsoil with two layers. The following soil properties in Table 9.5 are defined.

Layer No. I	Soil name	Depth of the soil layer under the ground	Modulus of cor loading re	npressibility for eloading	Unit weight of the soil
		surface Z [m]	<i>Es</i> [kN/m ²]	Ws [kN/m²]	$\frac{\gamma_s}{[kN/m^3]}$
1 2	Sand Silt	6.0 7.5	35000 6100	96000 16300	20 19

Table 9.5Soil properties

For centric loads of Pa = 4500 [kN] on each footing, the settlements at corners 1 ... 4 of the two footings No. 1 and No. 2 are to be calculated using the *GEO Tools* program.

 $\alpha = 1$ is defined as the reduction factor and vs = 0 as the *Poisson's* ratio. The Standard ratio of limit depth is Cs = 0.2 and the groundwater depth is Tw = 7.5 [m]. Unit weight of the footing concrete $\gamma_b = 25$ [kN/m³].

The dimensions of the two footings and their foundation depths Tf and embedment thickness Te (footing thickness) are shown in Figure 9.22.

Footing group in plan and section

9.8.2.2 Analysis of the project

9.8.2.2.1 Defining the project identification

The project identification data, main soil data, loads and dimensions and soil profile are defined using the *GEO Tools* program in the following steps.

The project identification data are defined with the option "Project Identification". Depending on the purpose of the calculation, the following data are defined (Figure 9.23):

Title:	Two isolated footings
Date:	22-01-2018
Project:	User's Manual

Project Ide	entification X
Project Io	dentification:
Title	Two isolated footings
Date	22/01/2018
Project	Example 1
<u>S</u> ave	<u>C</u> ancel <u>H</u> elp <u>L</u> oad Save <u>A</u> s

Figure 9.23 Project identification

9.8.2.2.2 Data for the purpose of settlement calculation

After clicking the "Settlements of footing groups" option, the data are defined for the purpose of the settlement calculation (Figure 9.24).

Figure 9.24 Settlements of footing groups

9.8.2.2.3 Calculation of limit depth

After the query as to whether the limit depth should be calculated at all, the following calculation values for the limit depth calculation are defined (Figure 9.24):

Dz	= Strip thickness for depth by iteration	= 0.5	[m]
Cs	= Standard ratio of limit depth ($0 \le C_s \le 1$)	= 0.2	[-]

9.8.2.2.4 Defining the main soil data

Then the following values are defined (Figure 9.24):

α	= Settlement reduction factor ($\alpha \le 1$) according to DIN	4019 =	1 [-]
Tw	= Groundwater depth under the ground surface	= 7.5	[m]
γ_b	= Unit weight of footing concrete	= 25	[kN/m ³]

9.8.2.2.5 Geometric data

As system data, the data of the foundation geometry are defined. After clicking on the "Loads and dimensions" tab, the geometric data for each of the two footings are defined in the following order:

Pa	Load on footing	[kN]
Am	Footing length	[m]
Bm	Footing breadth	[m]
Dm	Thickness of the footing	[m]
Tf	Foundation depth	[m]
ß	Rotating angle	[°]
Xm,Ym	Location of the footing center in the coordinate system	[m]
Hm	Height of the base of the footing above the fixed point	[m]

The defined data is shown in Figure 9.25.

GEO Tools

Figure 9.25 Loads and dimensions

9.8.2.2.6 Defining soil data

As soil data, the following data are defined for the two layers after clicking on the "Soil profile" tab (Figure 9.26):

Ζ	Level of layer under ground		[m]
	(Measured from ground level)		
E_S	Modulus of compressibility for loading		$[kN/m^2]$
	(Constant in layers)		
W_S	Modulus of compressibility for reloading		$[kN/m^2]$
	(Constant in layers)		
v_s	Poisson's ratio	[-]	
γ_s	Unit weight of the soil		[kN/m ³]

Figure 9.26 Soil profile

9.8.2.2.7 Settlement calculation

After saving the data and clicking the "Results" button, the computer starts calculating the limit depth. The strip thickness Dz = 0.5 [m] is used for calculation. The limit depth is Zg = 10.37 [m]. This depth is below the lower edge of the second layer, so it has no influence on the result of the settlement calculation, because the depth of the second layer is defined as 7.5 [m].

9.8.2.2.8 Presentation of data and results

In the *GEO Tools* there are numerous options for the printout of the data and results that can be carried out by the user.

The data and results for example 1 are listed in tabular form on the first next two pages. Then, the next 6 pages contain graphical representations of the data and results. There are numerous other display options.

Settlements of Footing Groups

******	*******	*******	******	* * * * * * * * * * *	*****	* * * *			
			GEO Tool	S					
	_		Version 1	3					
******	Program ********	1 authors ********	: M. El Ge ******	ndy/ A. El *********	Gendy **********	* * * *			
Title: T	'wo isolat	ed footi	ngs						
Project:	Example	1							
File: SZ	1								
Settleme	ents of fo	oting gr	oups						
Data of	limit dep	oth:							
Strip thickness for depth by iteration Standard ratio of limit depth (1>Cs, Cs>=0)				Dz [m] Cs [-]	= 0.5 = 0.2				
Main Soi	l Data:								
Groundwa	ter depth	n under t	he ground	surface	Tw [m]	= 7.50			
Settleme	nt reduct	ion fact	or		α [-]	= 1.00			
Unit wei	.gnt or ic	oting co	oncrete		γο [κΝ/Μ3]	= 25.00			
Overburd	len pressu	ire			Qv [kN/m2]	= 65.0			
Loading					Qe $[kN/m2]$	= 200.6			
Limit de	pressure pth under	ground	surface		ZG [m]	= 265.6			
Limit de	pth lies	under la	st layer						
Loads an	ıd dimensi	ons:							
Footing	Load on	Length	Breadth	Thickness	Foundation	X-coord.	Y-coord.	Rotating	Height
NO. T	FOOTING	Am	Bm	Dm	Deptn Tf	Xm	Ym	angie ß	Hm
-	[kN]	[m]	[m]	[m]	[m]	[m]	[m]	[°]	[m]
1	4500.0	4.80	4.00	1.25	3.25	3.00	3.00	0.00	0.00
2	4500.0	4.80	4.00	1.25	3.25	10.80	4.00	0.00	0.00

Boring:

Layer No.	Level of layer under ground	Modulus of compressibility for loading	Modulus of compressibility for reloading	Poisson's ratio of the soil	Unit weight of the soil
I	z	Es	Ws	vs	γs
[-]	[m]	[kN/m2]	[kN/m2]	[-]	[kN/m3]
1 2	6.00	35000	96000	0.00	20.00
	7.50	6100	16300	0.00	19.00

Stress on	soil against d	lepth (Foot	ing No. 1/ Ma	ax. Load)	:	
Iteration No.	Depth under foundation f	Stress due to Coundation	Stress from neighboring foundations	Sum of stresses	f Stress s from soil weight	ratio
I	z [m]	SE [kN/m2]	SD [kN/m2]	SU=SE+SI [kN/m2]	D SV [[kN/m2]	SU/SV [-]
0	0.00	265.6 230.2	0.0	265.0	65.0 75.0	4.09
2	1.00	172.0	0.1	172.1	L 85.0	2.02
3	1.50	136.9	0.2	137.1	L 95.0	1.44
4	2.00	115.0	0.6	115.5	5 105.0	1.10
5	2.50	99.3	1.0	100.3	3 115.0	0.87
6	3.00	86.9	1.6	88.5	124.8	0.71
/	3.50	/6.6	2.2	78.3	1 134.3	0.59
9	4.00	60 3	2.9	63 0) 153 3	0.49
10	5.00	53.7	4.3	58.0	162.8	0.36
11	5.50	48.0	5.0	52.9	9 172.3	0.31
12	6.00	43.0	5.6	48.5	5 181.8	0.27
13	6.50	38.6	6.0	44.7	7 191.3	0.23
14	7.00	34.9	6.5	41.3	3 200.8	0.21
15	7.50	31.6	6.8	38.3	3 210.3	0.18
Settlement	calculation f	for rigid c	entric loaded	l footings	5	
Footing No Overburden Loading Contact pr Modulus of	.: 1 pressure essure subgrade reac	tion	Qv Qe Qo ks	[kN/m2] = [kN/m2] = [kN/m2] = [kN/m3] =	= 65.0 = 200.6 = 265.6 = 9910.9	
Final sett Settlement Settlement Settlement Average se	lements of rig of the corner of the corner of the corner of the corner ttlement	id footing : right up : right do : left dow : left up	r: wm S1 wm S2 m S3 S4 Sm	[cm] [cm] [cm] [cm]	= 2.85 = 2.82 = 2.68 = 2.71 = 2.76	
Immediate Settlement Settlement Settlement Average se	settlement par of the corner of the corner of the corner of the corner ttlement	ts: : right up : right do : left dow : left up	o Sfl wn Sf2 m Sf2 Sf4 Smi	L [cm] 2 [cm] 3 [cm] 4 [cm] 5 [cm]	= 1.81 = 1.79 = 1.81 = 1.81 = 1.81	
Footing No Overburden Loading Contact pr Modulus of	.: 2 pressure essure subgrade reac	tion	Qv Qe Qo ks	[kN/m2] = [kN/m2] = [kN/m2] = [kN/m3] =	= 65.0 = 200.6 = 265.6 = 9432.7	
Final sett Settlement Settlement Settlement Average se	lements of rig of the corner of the corner of the corner of the corner ttlement	id footing : right up : right do : left dow : left up	r: 5 S1 52 7n S3 84 84 8m	[cm] [cm] [cm] [cm]	= 2.68 = 2.71 = 2.85 = 2.82 = 2.76	
Immediate Settlement Settlement Settlement Average se	settlement par of the corner of the corner of the corner of the corner ttlement	ts: : right up : right do : left dow : left up	o Sfl own Sf2 m Sf3 Sf4 Smi	L [cm] 2 [cm] 3 [cm] 4 [cm] 5 [cm]	= 1.81 = 1.81 = 1.81 = 1.79 = 1.81	

9.8.3 Example 2: Two adjacent rectangular footings File names DI1, DI2

9.8.3.1 Description of the problem

GEO Tools is to be used to calculate the self-settlements and the settlements and tilting from overlapping stress for the footing group shown in Figure 9.27. The group consists of two rectangular footings close to each other. Both footings are loaded symmetrically to each other in the X direction.

According to Figure 9.27b, the subsoil consists of silt layer to a depth of 5.00 [m] below the ground surface. Under the silt layer there is practically incompressible rock (sandstone).

The following soil properties are considered for the silt layer (layer no. 1):

Modulus of compressibility for loading	Es	= 5000	$[kN/m^2]$
Modulus of compressibility for reloading	Ws	= 15000	$[kN/m^2]$
Unit weight of the soil	γ_s	= 18.5	$[kN/m^3]$

No groundwater has been observed.

The load acts on each of the two footings is:

Pa1 = Pa2 = 1800 [kN].

From the unit weight of the footing concrete $\gamma_b = 25 \text{ [kN/m^3]}$ and the dimensions, *GEO Tools* calculates the self-weight of the footing and takes it into account in the settlement calculation.

For a good assessment of the proposed calculation, the settlement of the footing is calculated twice as follows:

- i) Without stress overlap (only self-settlement)
- ii) With stress overlap

b)

Figure 9.27 Representation of the footings a) Plan b) Section through the footings and the subsoil

9.8.3.2 Analysis of the project

The limit depth is Zg = 6.52 [m] for the single footing only, while for two adjacent rectangular footings Zg = 8.16 [m]. The limit depth is below the lower edge of layer 1, so it has no influence on the result of the settlement calculation, because the depth of the layer is defined as 5 [m].

Figure 9.28 shows settlements obtained by *GEO Tools*. The total settlements and tilting with the influence of the neighboring footing are shown in dashed lines. Self-settlement due to only the centrically loaded footing without interaction is presented in dot-dash lines.

Figure 9.28 Settlements and tilting of footings 1 and 2

9.8.3.3 Presentation of data and results

The input data and results of the settlement calculations for footings 1 and 2 are shown on the next pages.

*****	* * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * * * *	****	* * * * * * *	* * * *				
* * * * * *	Progra: ******	m authors *******	GEO Tool Version 1 M. El Ge	_s _3 endy/ A. El	Gend	Y ******	* * * *				
Title:	litle: Two adjacent rectangular footings										
Date:	7.10.89		J	5-							
Projec	t: Without	interact	ionExam	nple 2							
File:	DI1										
Settle	ments of f 	ooting gr	oups								
Data o	f limit de	pth:									
Strin	thickness	for denth	hy itera	ation	D7	[m]	= 0 5				
Standa	rd ratio o	f limit d	lepth (1>0	Cs, Cs>=0)	Cs	[-]	= 0.2				
Main S	oil Data:										
Ground	water dent	h under t	he ground	surface	Ψw	[m]	= 10 (10			
Settle	ment reduc	tion fact	or	Bullace	ά	[-]	= 1.00)			
Unit w	eight of f	ooting co	ncrete		γb	[kN/m3]	= 25.0	00			
Orrowhy	ndan nraaa				0	[]-NI /m 2]	- 10				
Loadin	a a	ule			Qv Oe	[kN/m2]	= 19 = 297				
Contac	t pressure				Qo	[kN/m2]	= 315				
Limit	depth unde	r ground	surface		ZG	[m]	= 6.52	2			
Limit	depth lies	under la	st layer								
Loads	and dimens	ions:									
Footin	g Load on	Length	Breadth	Thickness	Fou	ndation	X-cod	ord.	Y-coord.	Rotating	Height
No	. Footing	-				Depth				angle	-
	I Pa	Am	Bm	Dm		Tf		Xm	Ym	β	Hm
	[KN]	[m] 	[m]	[m]		[m]		[m] 	[m]		[m]
	1 1800	2.00	3.00	0.60		1.00	:	L.50	2.00	0.00	0.00
Boring	:										
Laver	Level of	 Mod	ulus of	Modulu		Poi			+ weigh+		
No.	laver	compress	ibility	compressibi	litv.	, 101	ratio	of	the soil		
	under	for	loading	for reloa	ding	of the	e soil				
-	ground		_								
⊥ [_]	Z [m]		ES [kN/m2]	[]=N	WS I/mวi		vs [_]		YS [kN/m3]		
[_]	[111]				· / III Z]				[C III / III / III]		
1	5.00		5000	1	5000		0.00		18.50		

Stress on soil against depth (Footing No. 1/ Max. Load):

Settlements of Footing Groups

Iteration No. I	Depth under foundation z [m]	Stress due to foundation SE [kN/m2]	Stre from sc weig [kN/m	ess r pil ght SV S n2]	ati E/S [-	LO SV -]
0 1 2 3 4 5 6 7 8 9 10 11 12	0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00	315 215 146 111 88 71 58 47 40 33 28 24 21	1 1 1 1 1	19 1 28 37 46 56 65 74 83 93 .02 11 20 .30	7.0 7.3 2.4 1.5 1.0 0.5 0.4 0.2 0.2 0.2 0.2	
Settlement c	alculation fo	r rigid centric	loaded	footing	s	
Footing No.: Overburden p Loading Contact pres Modulus of s	1 ressure sure ubgrade react	ion	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	19 297 315 3584
Final settle Settlement o Settlement o Settlement o Average sett	ments of riginal f the corner: f the corner: f the corner: f the corner: lement	d footing: right up right down left down left up	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		8.79 8.79 8.79 8.79 8.79 8.79
Immediate se Settlement o Settlement o Settlement o Average sett	ttlement part f the corner: f the corner: f the corner: f the corner: lement	s: right up right down left down left up	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		5.72 5.72 5.72 5.72 5.72 5.72

Settlements of Footing Groups

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * *						
GEO Tools Version 13 Program authors M. El Gendy/ A. El	Gendy ***********	* * *						
Title: Two adjacent rectangular footings								
Project: With interaction-Example 2 File: DI2								
Settlements of footing groups								
Data of limit depth:								
Strip thickness for depth by iteration Standard ratio of limit depth (1>Cs, Cs>=0)	Dz [m] = Cs [-] =	= 0.5 = 0.2						
Main Soil Data:								
Groundwater depth under the ground surface Settlement reduction factor Unit weight of footing concrete	Tw [m] = α [-] = γb [kN/m3] =	= 10.00 = 1.00 = 25.00						
Overburden pressure Loading Contact pressure Limit depth under ground surface Limit depth lies under last layer	Qv [kN/m2] = Qe [kN/m2] = Qo [kN/m2] = ZG [m] =	= 19 = 297 = 315 = 8.16						
Loads and dimensions:								
Footing Load on Length Breadth Thickness No. Footing I Pa Am Bm Dm	Foundation Depth Tf	X-coord. Xm	Y-coord. Ym	Rotating angle ß	Height Hm			
[kN] [m] [m]	[m]	[m]	[m]	[°]	[m]			
1 1800 2.00 3.00 0.60 2 1800 2.00 3.00 0.60	1.00 1.00	1.50 3.50	2.00 2.00	0.00	0.00			
Boring:								
Layer Level of Modulus of Modul No. layer compressibility compressib under for loading for relo- ground	us of Poiss ility r ading of the	son's Uni ratio of soil	t weight the soil					
I Z ES [-] [m] [kN/m2] [k]	Ws N/m2]	vs [-]	γs [kN/m3]					
1 5.00 5000	15000	0.00	18.50					
Stress on	soil against	depth (Foot	ing No. 1/ M	ax. Load)	:			
--	--	---	-----------------------------------	------------------------------	-------------	---	-------------------	--------------
Iteration No.	Depth under foundation	Stress due to foundation	Stress from neighboring	Sum o stresse	f	Str from s wei	ess oil ght	ratio
I	z [m]	SE [kN/m2]	foundations SD [kN/m2]	SU=SE+S [kN/m2	D]	[kN/	SV m2]	SU/SV [-]
0	0.00	315	0	31	5		19	17.03
1	0.50	215	3	21	8		28	7.86
2	1.50	140	10	14	2		46	3.08
4	2.00	88	40	12	8		56	2.30
5	2.50	71	42	11	3		65	1.74
6	3.00	58	40	9	8		74	1.32
7	3.50	47	36	8	4		83	1.01
8	4.00	40	32	.7	2		93	0.78
9 10	4.50	28	28	5	3		111	0.61
11	5.50	24	23	4	6		120	0.38
12	6.00	21	19	4	0		130	0.31
13	6.50	18	17	3	5		139	0.25
14	7.00	16	15	3	1		148	0.21
15	7.50	14	14	2	8		157	0.18
Settlement	calculation	for rigid c	entric loade	d footing	s			
Footing No Overburder	p.: 1 pressure		Qv	[kN/m2]	=	19		
Loading			Qe	[kN/m2]	=	297		
Modulus of	essure E subgrade rea	action	Q0 ks	[kN/m2] [kN/m3]	=	315 3381		
Final sett Settlement Settlement Settlement Average se	elements of re- c of the corne c of the corne c of the corne c of the corne ettlement	igid footing er: right up er: right do er: left dow er: left up	: S1 wn S2 m S3 s4 Sm	[cm] [cm] [cm] [cm]	= = =	11.17 11.17 9.32 9.32 10.25		
Immediate	settlement pa	arts:	0.5	1 []	_	C 01		
Settlement	of the corne	er: right do	wn Sf	1 [CIII] 2 [cm]	_	6 81		
Settlement	of the corne	er: left dow	n Sf	3 [cm]	=	5.68		
Settlement	of the corne	er: left up	Sf	4 [cm]	=	5.68		
Average se	ettlement		Sm	f [cm]	=	6.24		
Footing No	o.: 2							
Overburder	n pressure		Qv	[kN/m2]	=	19		
Loading Contact pr	Cossuro.		Qe Oo	[KN/MZ]	_	297		
Modulus of	subgrade rea	action	ks	[kN/m2]	=	2819		
Final sett	lements of r	igid footing	:					
Settlement	of the corne	er: right up	s1	[Cm]	=	9.32		
Settlement	of the corne	er: right do	wn S2	[cm]	=	9.32		
Settlement	of the corne	er: left dow	n S3	[cm]	=	11.17		
Average se	. or the corne ettlement	er: left up	S4 Sm	[Cm]	=	10.25		
Immediate	settlement n	arts:						
Settlement	of the corne	er: right un	Sf	1 [cm]	=	5.68		
Settlement	of the corne	er: right do	wn Sf.	2 [cm]	=	5.68		
Settlement	of the corne	er: left dow	n Sf	3 [cm]	=	6.81		
Settlement	of the corne	er: left up	Sf	4 [cm]	=	6.81		
Average se	ettlement		Sm	I CM	=	0.24		

9.8.4 Example 3: Footing group of six isolated footings File names GR1, GR2

9.8.4.1 Description of the problem

It is required to calculate the settlements of the footing group of six isolated footings shown in Figure 9.29. The footings are centrally loaded with (including footing weight):

$$Pa1 = Pa3 = Pa4 = Pa6 = 1650$$
 [kN]

and

Pa2 = Pa5 = 2250 [kN].

The following subsoil parameters are considered:

Layer No. I	Soil name	Depth of the soil layer under the ground surface	Modulus of compressibility for Loading Reloading		Unit weight of the soil
		<i>Z</i> [m]	Es [kN/	Ws m ²]	γ_s [kN/m ³]
$ \begin{array}{c} 1\\ 2\\ 3 \end{array} $	Sand, silty Sand, silty Sand, gravely	1.3 4.3 7.7	32000 32000 98000	89000 89000 135000	19.0 11.2 11.0

Table 9.6Soil properties

Poisson's ratio is taken to be $v_s = 0$, while the reduction factor is $\alpha = 1$. No limit depth calculation is required. The groundwater is at a depth of Tw = 1.3 [m] under the ground surface.

Dimensions of the footings 1 to 6 are presented in Figure 9.29a. The foundation depths (uniform Tf = 2.1 [m]) and the footing thicknesses (constant thickness Dm = 1.1 [m]) are presented in Figure 9.29b.

Figure 9.29 Representation of the footing group a) Plan, b) Section

9.8.4.2 Results by GEO Tools

From the analysis, the settlements reach the following values:

Footing 1 and 4	S = 0.93 to 0.99 [cm]
Footing 2 and 5	S = 1.13 to 1.17 [cm]
Footing 3 and 6	S = 0.93 to 0.99 [cm].

9.8.4.3 Presentation of data and results

The input data and results of the settlement calculations for the footing group obtained by *GEO Tools* are shown on the next pages.

*****	* * * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * * * *	* * * *	******	* * *	*			
			GEO Tool	s							
	Program	n authors	Version 1 M. El Ge	3 ndv/ A. El	Gend	lv					
******	********	******	*****	****	* * * *	******	* * *	*			
Title:	Test examp	ple for 6	footings								
Project	: Without	limit de	oth-Examp	le 3							
File: G	R1										
Settlem	ents of fo	oting gr	oups					-			
								-			
Main So	il Data:										
Groundw Settlem	ater depth ent reduct	n under t tion fact	he ground. .or	surface	Tν α	v [m] [-]	=	1.30 1.00			
Unit we	ight of fo	ooting co	oncrete		γt	o [kN/m3]] =	0.00			
Ecoting		Lons: 	Breadth	Thickness			 v		V-coord	Potating	Height
No.	Footing	Lengen	Dieautii	THICKNESS	rot	Depth	Λ	-00010.	1-0001u.	angle	nerdir
I	Pa	Am	Bm	Dm		Tf		Xm	Ym	β	Hm
	[kN]	[m]	[m]	[m] 		[m]		[m] 	[m]	[*]	[m]
1	1650	2.20	3.00	1.10		2.10		3.50	3.00	0.00	0.00
2	2250	3.00	3.00	1.10		2.10		8.00	3.00	0.00	0.00
3	1650	2.20	3.00	1.10		2.10		3.50	3.00	0.00	0.00
5	2250	3.00	3.00	1.10		2.10		8.00	10.00	0.00	0.00
6	1650	2.20	3.00	1.10		2.10		12.50	10.00	0.00	0.00
Poring											
Layer	Level of	Mod	lulus of	Modulu	s of	E Poi:	sso	n's Uni	t weight		
No.	Layer	compress	ibility	compressibi	lity dinc	/ r of th	ra	tio of oil	the soil		
	ground	101	Todatilà	101 10104	arm	g OI CIN	0	011			
I	Z		Es	[]]]	Ws	3		vs	γs		
[-] 	[m]		[KN/m2]	[KIN 	/m2]			[-] 	[KN/m3]		
1	1.30		32000	8	9000)	0	.00	19.00		
2	4.30		32000	8	9000)	0	.00	11.20		
						, 			11.00		
Settlem	ent calcul	lation fo	or rigid c	entric load	ed f	Footings					
			9								
Footing	No.: 1			0		[]=NI /m 2] .	_ 0				
Overbur	den pressi	ire		Q	v	[kN/m2] =	- 0 - 3	4			
Loading	-			Q	e	[kN/m2] =	= 2	08			
Contact	pressure	do rocat	ion	Q	0	[kN/m2] =	= 2	42			
Modulus	or subgra	ade react	.1011	K	S	[KN/III3] =	= 2	5914			
Final s	ettlements	s of rigi	d footing	:							
Settlem	ent of the	e corner:	right up	S	1	[cm] =	= 0	.99			
Settlem	ent of the	e corner:	left dow	n S	3	[Cm] =	- 0 - 0	.97			
Settlem	ent of the	e corner:	left up	S	4	[cm] =	= 0	.96			
Average	settlemer	nt		S	m	[cm] =	= 0	.96			
Immedia	te settler	ment part	s:								
Settlem	ent of the	e corner:	right up	S	f1	[cm] =	= 0	.52			
Settlem	ent of the	e corner:	right do	wn S	f2 f3	[cm] =	= 0	.53			
Settlem	ent of the	e corner:	left up	s S	⊥⊃ £4	[cm] =	= 0 = 0	.53			
Average	settlemer	nt	- 1	S	mf	[cm] =	= 0	.53			

Footing No.: 2 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		8 34 208 242 25046
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.17 1.13 1.13 1.17 1.15
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		0.58 0.60 0.60 0.58 0.59
Footing No.: 3 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		8 34 208 242 25279
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.96 0.93 0.97 0.99 0.96
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.53 0.54 0.53 0.52 0.53
Footing No.: 4 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	8 34 208 242 24452
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		0.97 0.99 0.96 0.93 0.96
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.53 0.52 0.53 0.54 0.53

Footing No.: 5			
Groundwater pressure	Ow	[kN/m2]	= 8
Overburden pressure	Ov	[kN/m2]	= 34
Loading	Õe	[kN/m2]	= 208
Contact pressure	Õo	[kN/m2]	= 242
Modulus of subgrade reaction	ƙs	[kN/m3]	= 21393
5			
Final settlements of rigid footing:			
Settlement of the corner: right up	S1	[cm]	= 1.13
Settlement of the corner: right down	S2	[cm]	= 1.17
Settlement of the corner: left down	S3	[cm]	= 1.17
Settlement of the corner: left up	S4	[cm]	= 1.13
Average settlement	Sm	[cm]	= 1.15
Immediate settlement parts:			
Settlement of the corner: right up	Sf1	[cm]	= 0.60
Settlement of the corner: right down	Sf2	[cm]	= 0.58
Settlement of the corner: left down	Sf3	[cm]	= 0.58
Settlement of the corner: left up	Sf4	[cm]	= 0.60
Average settlement	Smf	[cm]	= 0.59
-			
Footing No.: 6			
Groundwater pressure	Qw	[kN/m2]	= 8
Overburden pressure	Qv	[kN/m2]	= 34
Loading	Qe	[kN/m2]	= 208
Contact pressure	Qo	[kN/m2]	= 242
Modulus of subgrade reaction	ks	[kN/m3]	= 21393
Final settlements of rigid footing:			
Settlement of the corner: right up	S1	[cm]	= 0.93
Settlement of the corner: right down	s2	[cm]	= 0.96
Settlement of the corner: left down	s3	[cm]	= 0.99
Settlement of the corner: left up	S4	[cm]	= 0.97
Average settlement	Sm	[cm]	= 0.96
Immediate settlement parts:			
Settlement of the corner: right up	Sf1	[Cm]	= 0.54
Settlement of the corner: right down	Sf2	[cm]	= 0.53
Settlement of the corner: left down	Sf3	[cm]	= 0.52
Settlement of the corner. left up			
Sectiement of the corner. Tert up	Sf4	[Cm]	= 0.53

9.8.5 Example 4: Footing group of nine isolated footings

File name SZ4

9.8.5.1 Description of the problem

The influence of limit depth on the behavior of footings is explained by investigating the differential settlements for a system of nine isolated footings. The settlements are to be calculated from the footing group shown in Figure 9.30 und Table 9.7. The footings are centrally loaded. The footing thickness is Dm = 0.5 [m]. The unit weight of the footing concrete is $\gamma_b = 25$ [kN/m³].

		0		0				
		Dimer	nsions	Origi	n coordinates	5		
Footing No.	Load	Length	Bridth					
rooting no.	Pa	Am	Bm	Xm	Ym	β		
	[kN]	[m]	[m]	[m]	[m]	[°]		
1	2500	2.0	2.0	1.00	1.00	0		
2	900	1.5	1.5	6.25	1.25	0		
3	800	1.5	1.5	11.25	1.25	0		
4	2500	2.0	2.0	1.50	6.00	0		
5	5400	3.0	3.0	5.00	6.00	0		
6	950	1.5	1.5	11.25	6.25	0		
7	5400	4.5	2.0	2.12	8.7	45		
8	3000	2.5	2.0	5.75	11.00	0		
9	2000	2.0	1.5	10.00	10.25	0		

Table 9.7Load, dimensions and origin coordinates of the footings

Figure 9.30 a) plan of the footing group with loads [kN], b) Section through the subsoil

- 9.92 -

9.8.5.2 Soil properties

The subsoil under the foundations are three layers with different soil materials as shown in Table 9.8 and Figure 9.30b.

Poisson's ratio is taken to be $v_s = 0.3$ [-] and is constant for all soil layers. The influence of loading and reloading of the soil and the uplift pressure are considered. The groundwater is at a depth of Tw = 1.3 [m] under the ground, while the foundation depth for all footings is Tf = 2.2 [m].

	F = F = F		8				
Layer	Soil name	Depth of the	Undrained 1	Unit			
No.		soil layer	Loading	weight of			
		under the		the soil			
		ground surface					
		Z	E	E W			
		[m]	$[kN/m^2]$	$[kN/m^2]$	$[kN/m^3]$		
1	Sand	1.3	98 000	135 000	19		
2	Sand	12	98 000	135 000	11.2		
3	Silt	40	9 500	12 000	12		

Table 9.8Soil properties and depth of layers under the ground surface

9.8.5.3 Analysis and Results

Because the footing dimensions are relatively small, the footings can be treated as rigid footings resting on compressible soil. In this case, it is sufficient to determine the soil settlement at the center of the footing and footing corners. For a good assessment of the proposed calculation, the footing group is calculated twice as follows:

- Without limit depths, where the last layer for the subsoil is extended to a depth of up to 40 [m] below the ground surface.
- ii) The limit depths of the soil for all foundations are obtained from the maximum footing load (footing 5)

The limit depth calculation is carried out, assuming the limit depth at which the value Cs = 0.2 is reached.

The limit depth due to the loading of footing 5 is shown in Figure 9.31. The limit depth due to the maximum footing load (footing 5) is 14.06 [m].

Table 9.9 shows the central settlements of the footings for the two cases. As expected, the numerical results show that the limit depth has a significant influence on the settlement of the footings. It can be seen from Table 9.9 that there is a large difference between the settlement values using the two cases. Case i) gives high values of settlement, while in case ii) these are small.

Figure 9.31 Limit depth due to loading of the footing 5

Footing	Calculation of the central settlement [cm] based on						
No.	limit depth based on	without limit depth					
	footing 5	Z = 40 [m]					
1	0.95	3.63					
2	1.14	4.12					
3	0.93	3.52					
4	1.34	4.46					
5	1.67	5.11					
6	1.20	4.17					
7	1.30	4.30					
8	1.22	4.30					
9	0.94	3.58					

Table 9.9Central settlement of the footings

9.8.5.4 Presentation of data and results

The input data and results of the settlement calculations for footing group of nine isolated footings are shown on the next pages.

* * * * * *	* * * * * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * *	* * * * * * *	* * * *				
			GEO Tools								
			Version 13								
	Program	n authors	M. El Gen	dy/ A. El	Gend	ly					
* * * * * *	* * * * * * * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * *	******	* * * *				
Title:	Test examp	ple for 9	footings								
Date: 2	24-01-2018										
Project	t: Example	1									
File:	SZ4										
Settle	ments of fo	ooting gr	oups (with	out limit	dept	:h)					
Main So	oil Data:										
				-	_						
Ground	water depti	n under t	he ground	surface	'1'W	[m]	= 1.3	30			
Settle	ment reduct	lon fact	or		α	[-]	= 1.0	00			
Unit we	eight of fo	poting co	ncrete		γb	[kN/m3]	= 25.	.00			
Loads a	and dimens:	lons:									
Footin	g Load on	Length	Breadth	Thickness	F,on	Indation	X-co	bord.	Y-coord.	Rotating	Height
No	. Footing	_	_	_		Depth				angle	
	I Pa	Am	Bm	Dm		TÍ		Xm	Ym	β	Hm
	[kN]	[m]	[m]	[m]		[m]		[m]	[m]		[m]
	1 1000								·····	·····	
	1 1200	2.00	2.00	0.50		2.20		2.00	2.00	0.00	0.00
	2 1500	2.50	2.00	0.50		2.20		1.00	2.00	0.00	0.00
	3 1200	2.00	2.00	0.50		2.20	-	12.00	2.00	0.00	0.00
	4 1500	2.00	2.00	0.50		2.20		2.00	7.00	0.00	0.00
	5 2700	3.00	2.00	0.50		2.20		1.00	7.00	0.00	0.00
	6 1500 7 0700	2.00	2.00	0.50		2.20	-	2.00	1.00	0.00	0.00
	7 2700	4.50	2.00	0.50		2.20		3.00	11.00	45.00	0.00
	8 1200	2.00	2.00	0.50		2.20		7.00	12.00	0.00	0.00
	9 1200	2.00	2.00	0.50		2.20	-	12.00	12.00	0.00	0.00
Doring											
BOLING	•										
Lavor	Ievel of	Mod	hulus of	Modulu	e of	Poi	eeon!	, IIni	t weight		
Лаует	laver	COMPRESS	ibility c	ompressibi	1+++	, 101	ratio		the soil		
110.	under	for	loading	for reloa	dino	r of th			CHC DOIL		
	around	101	TOTATING	101 10104	aring	, OI CIN	0 5011	-			
т	ground 7		Fs		Ms		219	-	VS		
[_]	[m]		[kN/m2]	[k N	/m21	3	[_]		[kN/m3]		
L J							L.		[KN/m3]		
1	1 30		98000	13	5000)	0 30)	19 00		
2	12 00		98000	13	5000	,)	0.30))	11 20		
2	40 00		9500	1	2000	,)	0.30)	12 00		
						, 		, 	12.00		
So++10	ment calcu.	lation fo	r rigid ce	ntric load	od f	Footings					
Decerci	liciic carca.		i rigia co	Incrite roud	.cu I	COCLEGS					
Footin	a No • 1										
Ground	water nres	auro		0	ъл Г	kN/m21 :	= 9				
Overhu	rden nressi	ire		Q 0	τ 7 Γ	kN/m21 :	= 35				
Loadin	n	arc .		Q 0	e [kN/m21 :	= 269				
Contac	y t pressure			Q 0	0 [kN/m21 :	= 304				
Modulu	s of subarz	ade react	ion	e k	s ['kN/m31 :	= 9440)			
11000010	o or bubgro	ade react	.1011	11		1117/110]	5110	,			
Final	settlements	s of rigi	d footing:								
Settler	ment of the	e corner:	right up	S	1 r	cml :	= 4.05	5			
Settle	ment of the	e corner:	right dow	m S	2 [cml :	= 3 60)			
Settler	ment of the	e corner:	left down	S	3 [cml :	= 3.22	, ,			
Settler	ment of the	e corner:	left up	S	4 r	cm]	= 3.66	5			
Average	e settlemer	nt.	1010 45	S	m [cm] :	= 3.63	3			
				5	L	1	0.00	-			
Immedia	ate settler	nent part	s:								
Settle	ment of the	e corner.	right. up	2	f] [cml :	= 3.61	3			
Settle	ment of the	e corner:	right dow	n S	f2 [cm] :	= 3.16	5			
Settle	ment of the	e corner:	left down	S	f3 [cm]	= 2.82	2			
Settle	ment of the	e corner:	left up	S	f4 [cm]	= 3.22	2			
Average	e settlemer	nt	÷	S	mf [cm]	= 3.21	_			

Footing No.: 2 Groundwater pressure Overburden pressure	Qw Qv	[kN/m2] [kN/m2]	=	9 35
Loading Contact pressure Modulus of subgrade reaction	Qe Qo ks	[kN/m2] [kN/m2] [kN/m3]	= = =	269 304 8433
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		4.37 3.84 3.87 4.40 4.12
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		3.92 3.41 3.44 3.95 3.68
Footing No.: 3 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 269 304 8290
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		3.50 3.11 3.54 3.93 3.52
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		3.08 2.73 3.08 3.51 3.10
Footing No.: 4 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 344 379 7504
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		4.78 4.65 4.14 4.27 4.46
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		4.30 4.18 3.70 3.80 3.99

Footing No.: 5 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 419 454 7841
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		5.06 5.00 5.16 5.22 5.11
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]	=	4.55 4.51 4.64 4.72 4.60
Footing No.: 6 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 344 379 7901
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		3.92 3.90 4.43 4.45 4.17
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		3.47 3.46 3.97 3.99 3.72
Footing No.: 7 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 269 304 6900
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		4.07 4.48 4.54 4.12 4.30
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]	=	3.62 4.01 4.07 3.66 3.84

Footing No.: 8				
Groundwater pressure	Ow	[kN/m2]	=	9
Overburden pressure	~ Ov	[kN/m2]	=	35
Loading	0e	[kN/m2]	=	269
Contact pressure	00	[kN/m2]	=	304
Modulus of subgrade reaction	ks	[kN/m3]	=	6946
		[]		
Final settlements of rigid footing:				
Settlement of the corner: right up	S1	[cm]	=	3.97
Settlement of the corner: right down	S2	[cm]	=	4.50
Settlement of the corner: left down	s3	[cm]	=	4.63
Settlement of the corner: left up	S4	[cm]	=	4.11
Average settlement	Sm	[cm]	=	4.30
Immediate settlement parts:	~ ~ ~ ~			
Settlement of the corner: right up	S£1	[cm]	=	3.55
Settlement of the corner: right down	S±2	[cm]	=	4.04
Settlement of the corner: left down	Sf3	[cm]	=	4.18
Settlement of the corner: left up	Sf4	[Cm]	=	3.66
Average settlement	Smf	[cm]	=	3.86
Footing No.: 9				
Groundwater pressure	Ow	[kN/m2]	=	9
Overburden pressure	õv	[kN/m2]	=	35
Loading	õe	[kN/m2]	=	269
Contact pressure	20	[kN/m2]	=	304
Modulus of subgrade reaction	ks	[kN/m3]	=	8583
		[]		
Final settlements of rigid footing:				
Settlement of the corner: right up	S1	[cm]	=	3.17
Settlement of the corner: right down	s2	[cm]	=	3.56
Settlement of the corner: left down	s3	[cm]	=	3.99
Settlement of the corner: left up	S4	[cm]	=	3.60
Average settlement	Sm	[Cm]	=	3.58
Turne d'ale and blannet market				
Immediate settlement parts:	c f 1	[am]	_	2 70
Settlement of the corner, right down	O F J		_	2.10
Settlement of the corner: left down	012 0f2		_	3 57
Settlement of the corner: left up	ST3 GEV		_	3.57
Average settlement	SI4 Cmf		_	2.10
Average sectrement	SILL		-	J.10

* * * * * * * *	* * * * * * * * *	******	********	*******	* * * * * * * * * * * * * *	* * *			
			GEO Tool	s					
			Version 1	.3					
Program authors M. El Gendy/ A. El Gendy									
* * * * * * * *	******	* * * * * * * *	*******	*****	**********	* * *			
Title: I	est examp	le for 9	footings	3					
Date: 24	-01-2018		2						
Project:	Example4								
File: SZ	4								
Settleme	ents of fo	oting gr	oups (wit	h limit dep	th) 				
Data of	limit dep	th:							
Strip th	nickness f	or depth	by itera	tion		Dz [m]	= 0.5		
Standard	l ratio of	limit d	lepth (1>0	Cs, Cs>=0)		Cs [-]	= 0.2		
Main Soi	l Data:								
Groundwa	ter depth	under t	he ground	l surface		Tw [m]	= 1.30		
Settleme	ent reduct	ion fact	or			α [-]	= 1.00		
Unit wei	.ght of fo	oting co	ncrete			γb [kN/	m3] = 25.0	0	
Groundwa	tor proce	uro				Ow [kN	(m21 - 9		
Overburd	ler press	re				Qw [KN/	(m2) = 35		
Loading	ten pressu	ше				QV [KN/	$m_{21} - 410$		
Contact	nressure					Qe [kN/	$m^{2} = 410$		
Limit de	picssuic nth under	around	surface	Footing No	5/ Max Load	4) ZG [m]	= 14 0	6	
Lies at	laver	ground	Surrace	rooting no.	J/ MAX. 1040	I) IG [III]	= 3	0	
LICO de	Idyci					0 []	5		
Loads an	nd dimensi	ons:							
Footing	Load on	Length	Breadth	Thickness	Foundation	X-coord.	Y-coord.	Rotating	Height
No.	Footing	2			Depth			angle	2
I	Pa	Am	Bm	Dm	Tf	Xm	Ym	β	Hm
	[kN]	[m]	[m]	[m]	[m]	[m]	[m]	[°]	[m]
1	1200	2.00	2.00	0.50	2.20	2.00	2.00	0.00	0.00
2	1500	2.50	2.00	0.50	2.20	7.00	2.00	0.00	0.00
3	1200	2.00	2.00	0.50	2.20	12.00	2.00	0.00	0.00
4	1500	2.00	2.00	0.50	2.20	2.00	7.00	0.00	0.00
.5	2700	3.00	2.00	0.50	2.20	7.00	7.00	0.00	0.00
6	1500	2.00	2.00	0.50	2.20	12.00	7.00	0.00	0.00
7	2700	4.50	2.00	0.50	2.20	3.00	11.00	45.00	0.00
8	1200	2.00	2.00	0.50	2.20	7.00	12.00	0.00	0.00
9	1200	2.00	2.00	0.50	2.20	12.00	12.00	0.00	0.00

Boring:

Layer No.	Level of layer under ground	Modulus of compressibility for loading	Modulus of compressibility for reloading	Poisson's ratio of the soil	Unit weight of the soil
I	z	Es	Ws	vs	γs
[-]	[m]	[kN/m2]	[kN/m2]	[-]	[kN/m3]
1	1.30	98000	135000	0.30	19.00
2	12.00	98000	135000	0.30	11.20
3	40.00	9500	12000	0.30	12.00

Stress on	soil against	depth (Foot	ing No. 5/ Ma	ax. Load):		
Iteration No.	Depth under foundation	Stress due to foundation	Stress from neighboring	Sum of stresses	Stress from soil weight	ratio
т	7	SE	foundations	SU=SE+SD	SV	su/sv
±	[m]	[kN/m2]	[kN/m2]	[kN/m2]	[kN/m2]	[-]
0	0.00	454	0	454	35	13.04
1	0.50	310	0	310	40	7.68
2	1.00	210	1	211	46	4.59
3	2.00	100	3 7	103	52	2 3/
4 5	2.00	102	12	114	57	1 81
6	3.00	83	16	100	68	1.46
7	3.50	68	21	90	74	1.21
8	4.00	57	25	82	80	1.03
9	4.50	48	29	77	85	0.90
10	5.00	41	31	72	91	0.79
11	5.50	35	33	68	96	0.71
12	6.00	30	34	64	102	0.63
13	6.50	26	35	61	108	0.57
14	7.00	23	35	58	113	0.51
15	7.50	21	34	55	119	0.46
10	8.00	18	34	52	124	0.42
10	8.50	10	30	49	130	0.30
19	9.00	13	31	40	141	0.34
20	10.00	12	2.9	42	147	0.28
21	10.50	11	28	39	153	0.26
22	11.00	10	27	37	159	0.23
23	11.50	9	26	35	165	0.21
24	12.00	9	25	33	171	0.19
Settlemen Footing N	t calculation o.: 1	for rigid c	entric loaded	d footings		
Groundwat	er pressure		Qw	[kN/m2]	= 9	
Overburde	n pressure		Qv	[kN/m2] =	= 35	
Loading Contact n	roccuro		Qe	[KN/IIIZ]	= 209 - 304	
Modulus o	f subgrade re	action	ks	[kN/m3]	= 37396	
Final set	tlements of r	igid footing	:		- 1 10	
Settlemen	t of the corn	er. right do	wn 92		= 1.10	
Settlemen	t of the corn	er: left dow	n 53	[cm] :	= 0.81	
Settlemen	t of the corn	er: left up		[cm]	= 0.96	
Average s	ettlement	<u>-</u>	Sm	[cm]	= 0.95	
Immediate	settlement p	arts:				
Settlemen	t of the corn	er: right up	Sf1	L [CM] =	= 0.88	
Settlemen	t of the corn	er: right do	wn Si2	2 [CM] ·	= 0.73	
Settlemon	t of the corn	er: left dow	II SIS		- 0.03 - 0.75	
Average s	ettlement	cr. tert ub	SI	F [cm]	= 0.75	

Footing No.: 2 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 269 304 32164
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		1.23 1.04 1.05 1.24 1.14
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		0.99 0.82 0.83 1.00 0.91
Footing No.: 3 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 269 304 31495
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]	=	0.92 0.79 0.93 1.06 0.93
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.72 0.62 0.72 0.85 0.73
Footing No.: 4 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 344 379 27700
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		1.49 1.40 1.19 1.28 1.34
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]	=	1.22 1.13 0.96 1.03 1.09

Footing No.: 5 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	9 35 419 454 29057
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		1.65 1.62 1.70 1.73 1.67
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		1.34 1.33 1.38 1.44 1.37
Footing No.: 6 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 344 379 29290
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]	=	1.11 1.10 1.30 1.30 1.20
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.88 0.88 1.05 1.05 0.97
Footing No.: 7 Groundwater pressure Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qw Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]		9 35 269 304 24501
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.19 1.38 1.41 1.22 1.30
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.96 1.12 1.16 0.98 1.05
Footing No.: 8				
---	--	--	-------------	--
Groundwater pressure	Ow	[kN/m2]	=	9
Overburden pressure	õv	[kN/m2]	-	35
Loading	õe	[kN/m2]	=	269
Contact pressure	Õo	[kN/m2]	-	304
Modulus of subgrade reaction	ks	[kN/m3]	=	24667
		. , . ,		
Final settlements of rigid footing:				
Settlement of the corner: right up	S1	[cm]	=	1.06
Settlement of the corner: right down	s2	[cm]	-	1.27
Settlement of the corner: left down	s3	[cm]	-	1.37
Settlement of the corner: left up	S4	[cm]	-	1.16
Average settlement	Sm	[cm]	-	1.22
		L - J		
Immediate settlement parts:				
Settlement of the corner: right up	Sf1	[cm]	=	0.85
Settlement of the corner: right down	Sf2	[cm]	=	1.03
Settlement of the corner: left down	Sf3	[cm]	=	1.12
Settlement of the corner: left up	Sf4	[cm]	=	0.93
Average settlement	Smf	[cm]	=	0.98
-				
Footing No.: 9				
Groundwater pressure	Qw	[kN/m2]	=	9
Overburden pressure	Qv	[kN/m2]	=	35
Loading	Qe	[kN/m2]	=	269
Contact pressure	Qo	[kN/m2]	=	304
Modulus of subgrade reaction	ks	[kN/m3]	=	32490
-				
Final settlements of rigid footing:				
Settlement of the corner: right up	S1	[cm]	=	0.80
Settlement of the corner: right up Settlement of the corner: right down	S1 S2	[cm] [cm]	=	0.80 0.93
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down	S1 S2 S3	[cm] [cm] [cm]	= = =	0.80 0.93 1.07
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up	S1 S2 S3 S4	[cm] [cm] [cm] [cm]	=	0.80 0.93 1.07 0.94
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.80 0.93 1.07 0.94 0.94
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		0.80 0.93 1.07 0.94 0.94
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement Immediate settlement parts:	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		0.80 0.93 1.07 0.94 0.94
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement Immediate settlement parts: Settlement of the corner: right up	S1 S2 S3 S4 Sm Sf1	[cm] [cm] [cm] [cm] [cm]		0.80 0.93 1.07 0.94 0.94
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down	S1 S2 S3 S4 Sm Sf1 Sf2	[cm] [cm] [cm] [cm] [cm] [cm]		0.80 0.93 1.07 0.94 0.94 0.62 0.72
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down	S1 S2 S3 S4 Sm Sf1 Sf2 Sf3	[cm] [cm] [cm] [cm] [cm] [cm] [cm]		0.80 0.93 1.07 0.94 0.94 0.62 0.72 0.86
Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left down	S1 S2 S3 S4 Sm Sf1 Sf2 Sf3 Sf4	[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]		0.80 0.93 1.07 0.94 0.94 0.62 0.72 0.86 0.73

9.8.6 Example 5: Verifying the main modulus of subgrade reaction k_{sm}

File name BET

9.8.6.1 Description of the problem

It is known that the modulus of subgrade reaction k_s is not a soil constant but is a function of the contact pressure and settlement. It depends on foundation loads, foundation size and stratification of the subsoil. The main modulus of subgrade reaction k_{sm} for a rectangular foundation on layered subsoil can be obtained from dividing the average contact pressure q_o over the settlement s_o under the characteristic point on the foundation, which has been defined by *Graßhoff* (1955). Clearly, this procedure is valid only for rectangular foundations on a layered subsoil model. Determining the main modulus of subgrade reaction k_{sm} for irregular foundation on an irregular subsoil model using another analysis is also possible by *ELPLA*.

In this example, settlement calculations at the characteristic point on the raft, using *Steinbrener's* formula (1934) for determining the settlement under the corner of a rectangular loaded area with the principle of superposition, are used to verify *GEO Tools* analysis for determining the main modulus of subgrade reaction k_{sm} .

Consider the square raft in Figure 9.32, with area of $A_f = 8 \times 12 \text{ [m^2]}$ and thickness of d = 0.6 [m].

9.8.6.2 Soil properties

The soil under the raft consists of three layers as shown in Figure 9.32 and Table 9.10. *Poisson's* ratio is $v_s = 0.0$ [-] for the three layers. The foundation level of the raft is $d_f = 2.0$ [m].

Layer No.	Type of soil	Depth of layer z [m]	Modulus of compressibility <i>E_s</i> [kN/m ²]	Unit weight of the soil γ _s [kN/m ³]
1	Clay	9.0	8 000	18
2	Medium sand	14.0	100 000	-
3	Silt	20.0	12 000	-

Table 9.10Soil properties

9.8.6.3 Loads

The raft carries 12 column loads, each is P = 1040 [kN].

9.8.6.4 Raft material

The raft material (concrete) has the following properties:

Young's modulus	E_b	$= 2.0 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio	v_b	= 0.25	[-]
Unit weight	γ_b	= 0.0	$[kN/m^3]$

Unit weight of the raft material is chosen $\gamma_b = 0.0 \text{ [kN/m^3]}$ to neglect the self-weight of the raft.

Figure 9.32 Raft dimensions, loads, FE-Net and subsoil

9.8.6.5 Settlement calculations by hand

The average contact pressure q_0 is given by

$$q_0 = \Sigma P / A_f = 12 \times 1040 / (8 \times 12) = 130 [kN/m^2].$$

The raft settlement is obtained at the characteristic point *o* by hand calculation. This point *o* takes the coordinates $a_c = 0.87 A$ and $b_c = 0.87 B$ as shown in Figure 9.33. The raft is divided into four rectangular areas I, II, III and IV as shown in Figure 9.33. The settlement of point *o* is then the sum of settlements of areas I, II, III and IV.

Figure 9.33 Characteristic point o of the settlement on the raft

According to *Steinbrenner* (1934) the settlement s of a point lying at a depth z under the corner of a rectangular loaded area $a \times b$ and intensity q is given by

$$s = \frac{q(1 - v_s^2)}{2\pi E_s} \left(b \times \ln \frac{(c-a)(m+a)}{(c+a)(m-a)} + a \times \ln \frac{(c-b)(m+b)}{(c+b)(m-b)} \right) + \frac{q(1 - v_s - 2v_s^2)}{2\pi E_s} \left(z \tan^{-1} \frac{ab}{zc} \right)$$
(42)

The above equation can be rewritten as:

$$s = \frac{q}{2\pi E_s} (B_n + A_n + D_n) = \frac{q}{2\pi E_s} c_n = \frac{q}{E_s} f \qquad (43)$$

- 9.118 -

Where
$$m = \sqrt{(a^2 + b^2)}$$
 and $c = \sqrt{(a^2 + b^2 + z^2)}$

The settlement calculations of the 1st soil layer are carried out in Table 9.11.

				2	<u> </u>			
Area	<i>a</i> [m]	<i>b</i> [m]	<i>m</i> [m]	<i>c</i> [m]	B_n	A_n	D_n	C_n
Ι	6.96	1.56	7.133	9.994	4.183	0.904	1.078	6.165
II	1.04	1.56	1.875	7.247	1.500	2.030	0.224	3.754
III	6.96	10.44	12.547	14.368	2.013	3.803	4.380	10.196
IV	1.04	10.44	10.492	12.613	0.351	3.788	0.857	4.996
ΣC_n								

Table 9.11Settlement calculations of the 1st soil layer ($z_1 = 7$ [m])

The settlement coefficient f_1 for the 1st layer is given by:

$$f_1 = \Sigma C_n / 2\pi = 25.111 / (2\pi) = 3.997$$

The settlement s_1 for the 1^{st} soil layer is given by:

$$s_1 = q_0 f_1 / E_{s1} = 130 \times 3.997 / 8000 = 0.06494 \text{ [m]}$$

In similar manner, the settlement coefficient f_2 for a soil layer until depth z = 12 [m] is

$$f_2 = 5.2$$

The settlement s_2 for the 2nd soil layer is given by:

$$s_2 = q_0 (f_2 - f_1) / E_{s2} = 130 (5.2 - 3.997) / 100000 = 0.00156 [m]$$

The settlement coefficient f_3 for a soil layer until depth z = 18 [m] is

$$f_3 = 6.038$$

The settlement s_3 for the 3^{rd} soil layer is given by:

$$s_3 = q_0 (f_2 - f_3) / E_{s3} = 130 (6.038 - 5.2) / 12000 = 0.00908 [m]$$

The total settlement s_o for all layers is given by:

 $s_0 = s_1 + s_2 + s_3 = 0.06494 + 0.00156 + 0.00908 = 0.07558 \text{ [m]}$

The main modulus of subgrade reaction k_{sm} is given by:

 $k_{sm} = q_o / s_o = 130 / 0.07558 = 1720 [kN/m^3]$

9.8.6.6 Comparison of results

Table 9.12 compares the values of modulus of subgrade reaction obtained by using *Steinbrenner's* formula (1934) through hand calculation with that of *GEO Tools*. It shows that the main modulus k_{sm} computed by using *Steinbrenner's* formula and that by *GEO Tools* are nearly the same.

Table 9.12Main modulus of subgrade reaction k_{sm} computed by using *Steinbrenner's* formula and
GEO Tools

Item	Hand calculation	GEO Tools	Difference [%]
Main modulus <i>k_{sm}</i> [kN/m ³]	1720	1720	0.0

9.8.6.7 Presentation of data and results

The input data and results of the settlement calculations of the raft are shown on the next pages.

******	*******	*******	GEO Tool	*********** S	****	* * * * * *	* * * *				
	Program	n authors	Version 1 M. El Ge	3 ndy/ A. El	Gendy						
******** Title: M Date: 04 Project: File: BE	Iain modul -01-2018 Example	********* Lus of su 5	********* bgrade re	**************************************	****	* * * * * *	* * * *				
Settleme	ents of fo	ooting gr	 oups 								
Main Soi	l Data:										
Groundwa Settleme Unit wei	ter depth nt reduct ght of fo	n under t tion fact poting co	he ground or ncrete	surface	Tw [α [γb [m] -] kN/m3]	= 20. = 1.0 = 0.0	00			
Loads an	d dimensi	Lons:									
Footing No. I	Load on Footing Pa [kN]	Length Am [m]	Breadth Bm [m]	Thickness Dm [m]	Foun	dation Depth Tf [m]	X-cc	ord. Xm [m]	Y-coord. Ym [m]	Rotating angle β [°]	Height Hm [m]
1	12480	12.00	8.00	0.60		2.00		6.00	4.00	0.00	0.00
Boring:											
Layer L No.	evel of layer under ground	Mod compress for	ulus of ibility loading	Modulu compressibi for reloa	s of lity ding	Poi: of the	sson's ratic e soil	Uni of	t weight the soil		
I [-]	z [m]		Es [kN/m2]	[kN	Ws /m2]		vs [-]		γs [kN/m3]		
1 2 3	9.00 14.00 20.00		8000 100000 12000	10 1	8000 0000 2000		0.00 0.00 0.00		18.00 18.00 18.00		
Settleme	ent calcul	lation fo	r rigid c	entric load	ed fo	otings					
Footing Overburd Loading Contact Modulus	No.: 1 len pressu pressure of subgra	ire ade react	ion	Q Q Q k	v [k e [k o [k s [k	N/m2] = N/m2] = N/m2] = N/m3] =	= 36 = 94 = 130 = 1720				
Final se Settleme Settleme Settleme Average	ettlements ent of the ent of the ent of the settlemer	s of rigi e corner: e corner: e corner: e corner: nt	d footing right up right do left dow left up	: s wn s n s s	1 [c 2 [c 3 [c 4 [c m [c	m] = m] = m] = m] =	= 7.56 = 7.56 = 7.56 = 7.56 = 7.56				
Immediat Settleme Settleme Settleme Settleme Average	e settlen ent of the ent of the ent of the ent of the settlemer	ment part e corner: e corner: e corner: e corner: nt	s: right up right do left dow left up	s wn s n s s s	f1 [c f2 [c f3 [c f4 [c mf [c	m] = m] = m] = m] =	= 4.57 = 4.57 = 4.57 = 4.57 = 4.57				

9.8.7 Example 6: Rigid square raft on Isotropic elastic half-space medium

File name QUA

9.8.7.1 Description of the problem

To verify the mathematical model of *GEO Tools* for rigid square raft, the results of a rigid square raft obtained by other analytical solutions from *Kany* (1974), *Fraser/ Wardle* (1976), *Chow* (1987), *Li/ Dempsey* (1988) and *Stark* (1990), Section 5.4, page 114, are compared with those obtained by *GEO Tools*.

The vertical displacement w [m] of a rigid square raft on Isotropic elastic half-space medium may be evaluated by

$$w = \frac{P B (1 - v_s^2)}{E_s} I \qquad (44)$$

where:

- v_s Poisson's ratio of the soil [-]
- E_s Young's modulus of the soil [kN/m²]
- *B* Raft side [m]
- *I* Displacement influence factor [-]
- p Load intensity on the raft [kN/m²]

A square raft on Isotropic elastic half-space soil medium is chosen. In the literatures of *Fraser/Wardle* (1976), *Chow* (1987), *Li/Dempsey* (1988) and *Stark* (1990) the raft is divided into nets with different dimensions. The nets range from 2×2 to 48×48 elements. The net of 16×16 elements is used to comparison here. Load on the raft, raft side and the elastic properties of the soil are chosen to make the first term from Eq. 44 equal to unit, hence:

Raft side	В	= 10	[m]
Uniform load on the raft	р	= 500	$[kN/m^2]$
Modulus of compressibility	E_s	= 5000	$[kN/m^2]$
Poisson's ratio of the soil	v_s	= 0.0	[-]

9.8.7.2 Analysis of the raft

The assumption of the isotropic elastic half-space model requires an infinite compressible soil layer under the foundation. To simulate the elastic-isotropic half-space, the subsoil is defined by a layer of 1000 [m].

The available method "9- Settlements of footing groups" in the GEO Tools program can be used here to determine the vertical displacement of the rigid plate on the elastic-isotropic half-space medium. Figure 9.34 shows the quarter of the raft with a net of total 16×16 elements.

Figure 9.34 Quarter of rigid square raft with dimensions and FE-Net

9.8.7.3 Results

Table 9.13 shows the comparison of the displacement influence factor *I* obtained by *GEO Tools* with those obtained by other published solutions from *Fraser/Wardle* (1976), *Chow* (1987), *Li/Dempsey* (1988) and *Stark* (1990) for a net of 16×16 elements. In addition, the displacement influence factor *I* is obtained by using *Kany's* charts (1974) through the conventional solution of a rigid raft.

Table 9.13	Comparison of displacement influence factor I obtained by GEO Tools with those
	obtained by other authors for a net of 16×16 elements

	Displacement influence factor I [-]									
<i>Kany</i> (1974)	Kany (1974)Fraser/ Wardle (1976)Chow (1987)Li/ Dempsey 									
0.85	0.835	0.8675	0.8678	0.8581	0.8539					

9.8.7.4 Presentation of data and results

The input data and results of the settlement calculations of the raft are shown on the next pages.

<pre>******* Title: Date: 2 Project File: (Settlen Main Sc Groundw Settlen Unit we Loads a</pre>	Program Rigid squa 25-01-2018 :: Example QUA ments of for bil Data: vater depth ment reduct eight of for	n authors are raft 6 boting gr h under t tion fact boting co lons:	<pre>********** GEO Tool: Version 1: M. El Gen ************************************</pre>	*********** 3 ndy/ A. El ***********	- Gen • **** • • • • • • • • • • • • • • • •	<pre>********* dy dy ***********************</pre>	* * * * * * * = 	* - - 1.00 0.00			
Footing	g Load on	Length	Breadth	Thickness	s Fo	undation	 X	-coord.	Y-coord.	Rotating	Height
No. 1	Footing Pa [kN]	Am [m]	Bm [m]	Dn [m]	1	Depth Tf [m]		Xm [m]	Ym [m]	angle β [°]	Hm [m]
1	50000	10.00	10.00	1.00)	0.00		5.00	5.00	0.00	0.00
Layer No.	Level of layer under ground z [m]	Mod compress for	ulus of ibility loading Es [kN/m2]	Modul compressik for relc [k	us o pilit; padin W. N/m2	f Pois Y g of the s]	 sso: ra e s	n's Uni tio of oil vs [-]	it weight the soil γs [kN/m3]		
1	1000.00		5000		500	0	0	.00	18.00		
Settlen Footing Overbur Loading Contact Modulus	nent calcul g No.: 1 cden pressu g c pressure s of subgra	lation fo ure ade react	r rigid co	entric loa	QV Qv Qe Qo ks	footings [kN/m2] = [kN/m2] = [kN/m2] = [kN/m3] =	= 0 = 5 = 5	00 00 86			
Final s Settlen Settlen Settlen Settlen Average	settlements ment of the ment of the ment of the ment of the settlement	s of rigi e corner: e corner: e corner: e corner: nt	d footing right up right dow left down left up	: wn n	S1 S2 S3 S4 Sm	[cm] = [cm] = [cm] = [cm] =	= 8 = 8 = 8 = 8	5.39 5.39 5.39 5.39 5.39 5.39			
Immedia Settlen Settlen Settlen Settlen Average	ate settler ment of the ment of the ment of the ment of the settlemen	ment part e corner: e corner: e corner: e corner: nt	s: right up right dow left down left up	wn n	Sf1 Sf2 Sf3 Sf4 Smf	[cm] = [cm] = [cm] = [cm] =	= 6 = 6 = 6 = 6	3.93 3.93 3.93 3.93 3.93 3.93			

9.8.8 Example 7: Immediate settlement under an isolated footing

File name SZ2

9.8.8.1 Description of the problem

GEO Tools can be used to calculate the immediate (elastic) settlement of an isolated footing on a horizontally layered subsoil. undrained moduli *E* and *W* for bilinear deformation behavior are defined. The unit weight of the footing γ_b , the footing thickness and the foundation depth are defined and considered. The modulus of sub grade reaction is also calculated.

An isolated footing Am=4 [m] × Bm=2 [m], with a uniform load of q = 150 [kN/m²], is located at a depth Tf = 1.0 [m] in a clay layer of 5.0 [m] thick for which the undrained modulus of the layer for loading is $E = 40\ 000$ [kN/m²] and for reloading $W = 120\ 000$ [kN/m²]. The layer is underlain by a second clay layer 8.0 [m] thick for which the undrained modulus of the layer for loading $E = 75\ 000$ [kN/m²] and for reloading $W = 225\ 000$ [kN/m²]. A hard stratum lies below the second layer. A plan of the footing with dimensions and a section through the ground under the footing are shown in Figure 9.35. The unit weight of the footing concrete is $\gamma_b = 25$ [kN/m³], while foundation depth under the ground surface is Dm = 0.5 [m].

The average immediate (elastic) settlement under the isolated footing with uniform pressure q [kN/m²] on the surface of saturated clay soil layers, in which the *Poisson's* ratio $v_s = 0.5$ [-], should be calculated using the *GEO Tools* program. Such settlement occurs under undrained conditions.

9.8.8.2 Soil properties

Figure 9.35 shows a plan of the isolated footing with dimensions and loading, and also a section in the subsoil of the two layers. The following soil properties for the two layers are defined in Table 9.14:

Layer No. I	Type of soil	Depth of the soil layer under the ground	Undrained 1 loading	modulus for reloading	Unit weight of the soil
		surface Z [m]	E [kN/m ²]	W [kN/m²]	$\frac{\gamma_s}{[kN/m^3]}$
1 2	Clay Clay	5 13	40 000 75 000	120 000 225 000	18 18

Table 9.14Soil properties

Poisson's ratio is $v_s = 0.5$ [-] for the two layers. The foundation dept of the footing is Tf = 1.0 [m]. The redaction factor is $\alpha = 1$. The limit depth ratio is Cs = 0.2 and the groundwater depth is Tw = 13 [m] under the ground surface.

Figure 9.35 a) Section through the soil and the footing b) Plan of the footing with dimensions and loading

9.8.8.3 Analysis and results

Because the dimensions of the footing are relatively small, the footing can be treated as a rigid footing resting on compressible subsoil. In this case it suffices to determine the immediate settlement at the characteristic point, Figure 9.36.

Figure 9.36 Characteristic point *o* of the settlement at the footing

9.8.8.4 Immediate settlement by GEO Tools

After defining and saving the project identification, system data, footing dimension, loading and soil properties by the *GEO Tools* program. The limit depth for the foundation can then be calculated. Then, the immediate settlement is calculated at the characteristic point of the footing.

9.8.8.5 Presentation of data and results

The input data and results of the settlement calculations of the raft are shown on the next pages.

******	* * * * * * * * *	*******	GEO Tools	* * * * * * * * * * * * S	* * * * * *	*******	*				
* * * * * * * *	Program	n authors	Version 13 M. El Ger	3 ndy/ A. El (Gendy *****	* * * * * * * * *	*				
Title: S Date: 25 Project: File: SZ	ettlement -01-2018 Example 2	z calcula 7	tion for a	an isolated	footi	ng					
Settleme	nts of fo	oting gr	coups				-				
Data of	limit dep	oth:					-				
Strip th Standard	ickness d ratio of	for depth E limit c	by iterat lepth (1>Cs	tion s, Cs>=0)			Dz Cs	[m] [-]	= 0.5 = 0.2		
Main Soi	l Data:										
Groundwa Settleme Unit wei	ter depth nt reduct ght of fo	n under t tion fact poting co	che ground cor oncrete	surface			Tw α γb	[m] [-] [kN/m3]	= 13.00 = 1.00 = 25.00)	
Overburd Loading Contact Limit de Lies at	en pressu pressure pth under layer	ire ground	surface (H	Footing No.	1/ Ma	x. Load)	QV Qe Qo ZG U	[kN/m2] [kN/m2] [kN/m2] [m] [-]	= 18 = 145 = 163 = 5.58 = 2		
Loads an	d dimensi	Lons:									
Footing No. T	Load on Footing Pa	Length Am	Breadth Bm	Thickness	Found	ation X· Depth Tf	-coo	rd. Y- Xm	coord. Ym	Rotating angle ß	Height Hm
	[kN]	[m]	[m]	[m]		[m]		[m]	[m]	[°]	[m]
1	1200	4.00	2.00	0.50		1.00	2	.00	1.00	0.00	0.00
Boring:											
Layer L No.	evel of layer under ground	Moc compress for	dulus of sibility of loading	Modulus compressibi for reload	s of lity ding	Poisson ra [.] of the so	n's tio oil	Unit w of the	eight soil		
I [-]	z [m]		Es [kN/m2]	[kN,	Ws /m2]		vs [-]	[k	γs N/m3]		
1 2	5.00 13.00		40000 75000	12(22!	 0000 5000	0	.50 .50		18.00 18.00		
Stress o	n soil ag	gainst de	epth (Foot	ing No. 1/ 1	Max. L	oad):					
Iteratio No	n four	Depth under udation	Stre due foundat	ess St to from ion we	tress soil eight	ratio					
	I	z [m]	[kN/r	SE n2] [k]	SV N/m2]	SE/SV [-]					
	0 1 2 3 4 5 6 7	0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50		163 117 82 63 50 41 34 28	18 27 36 45 54 63 72 81	9.03 4.34 2.26 1.39 0.93 0.65 0.47					
	8 9	4.00		24 20	90 99	0.27					

5.00 18 108 0.16

10

Settlement calculation for rigid centric loaded footings

Footing No.: 1 Overburden pressure	Qv	[kN/m2]	=	18
Loading Contact pressure Modulus of subgrade reaction	Qe Qo ks	[kN/m2] [kN/m2] [kN/m3]	= = =	145 163 41711
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		0.39 0.39 0.39 0.39 0.39 0.39
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		0.39 0.39 0.39 0.39 0.39 0.39

9.8.9 Example 8: System of rigid centrally loaded square plates File name SZ3

9.8.9.1 Description of the problem

The settlements from stress overlaps for the plate group shown in Figure 9.37, consisting of 36 small square plates lying close together, are to be calculated using the *GEO Tools* program. All plates are loaded in the middle. A concentrated load from a uniform surcharge acts on each of the plates is:

*Pa*1= ... =*Pa*36 = 135 [kN].

The plat thickness is Dm = 0.2 [m], while the dimensions of a plate are Am=1.5 [m] length × Bm=1.5 [m] breadth. The unit weight of the plate concrete is $\gamma_b = 25$ [kN/m³].

9.8.9.2 Soil properties

The group of plates rests on a subsoil with three layers of different soil materials. The following soil properties in Table 9.15 and Figure 9.38 are defined.

Layer No.	Type of	Depth of the soil layer under the	Modulus of compressibility for		Unit weight of the soil
	the son	ground surface Z [m]	loading Es [kN/m ²]	reloading <i>Ws</i> [kN/m ²]	γ_s [kN/m ³]
1	Sand	1.65	200 000	200 000	18
2	Sand	3	200 000	200 000	9
3	Silt	12	14 000	14 000	10

Table 9.15Soil properties and depth of layers for the subsoil

The groundwater depth is Tw = 1.65 [m] under the ground surface. *Poisson's* ratio is $v_s = 0.3$ [-] and constant for all three layers. The foundation depth for all plates is Tf = 0.2 [m]. The redaction factor is $\alpha = 1$. The limit depth ratio is Cs = 0.2.

Figure 9.37 Plate group in plan with loads [kN]

Figure 9.38 Section in the subsoil with loads [kN/m²]

9.8.9.3 Analysis and results

Because the plate dimensions are relatively small, the plate group can be treated as a system of rigid centrally loaded square plates on a layered subsoil. In this case, it is sufficient to determine the settlements at 4 corner points of each plate including the influence of the stress overlap.

After defining and saving the project identification, system data, footing dimension, loading and soil properties by the *GEO Tools* program. The limit depth for the foundation can then be calculated. Then, the settlements with the influence of the stress overlap are calculated for each of the corners 1 ... 4, namely for all plates No. 1 to No. 36.

9.8.9.4 Presentation of data and results

The input data and results of the settlement calculations for plate group of 36 plates are shown on the next pages.

GEO Tools Version 13 Program authors M. El Gendy/ A. El Gendy	*			
Title: 36 Pavement plates Date: 25-01-2018 Project: Example 8 File: SZ3				
Settlements of footing groups	-			
Data of limit depth:	-			
Strip thickness for depth by iteration Standard ratio of limit depth (1>Cs, Cs>=0)	Dz Cs	[m] [-]	=	0.5
Main Soil Data: Groundwater depth under the ground surface Settlement reduction factor Unit weight of footing concrete	Tw α γb	[m] [-] [kN/m3]	= = =	1.65 1.00 20.00
Overburden pressure Loading Contact pressure Limit depth under ground surface (Footing No. 1/ Max. Load) Lies at layer	Qv Qe Qo ZG U	[kN/m2] [kN/m2] [kN/m2] [m] [-]	=	4 60 64 7.19 3

Loads and dimensions:

Footing No.	Load on Footing	Length	Breadth	Thickness	Foundation Depth	X-coord.	Y-coord.	Rotating angle	Height
I	Pa	Am	Bm	Dm	Tf	Xm	Ym	β	Hm
	[kN]	[m]	[m]	[m]	[m]	[m]	[m]	[*]	[m]
1	135	1.50	1.50	0.20	0.20	0.75	0.75	0.00	0.00
2	135	1.50	1.50	0.20	0.20	2.25	0.75	0.00	0.00
3	135	1.50	1.50	0.20	0.20	3.75	0.75	0.00	0.00
4	135	1.50	1.50	0.20	0.20	5.25	0.75	0.00	0.00
5	135	1.50	1.50	0.20	0.20	6.75	0.75	0.00	0.00
6	135	1.50	1.50	0.20	0.20	8.25	0.75	0.00	0.00
7	135	1.50	1.50	0.20	0.20	0.75	2.25	0.00	0.00
8	135	1.50	1.50	0.20	0.20	2.25	2.25	0.00	0.00
9	135	1.50	1.50	0.20	0.20	3.75	2.25	0.00	0.00
10	135	1.50	1.50	0.20	0.20	5.25	2.25	0.00	0.00
11	135	1.50	1.50	0.20	0.20	6.75	2.25	0.00	0.00
12	135	1.50	1.50	0.20	0.20	8.25	2.25	0.00	0.00
13	135	1.50	1.50	0.20	0.20	0.75	3.75	0.00	0.00
14	135	1.50	1.50	0.20	0.20	2.25	3.75	0.00	0.00
15	135	1.50	1.50	0.20	0.20	3.75	3.75	0.00	0.00
16	135	1.50	1.50	0.20	0.20	5.25	3.75	0.00	0.00
17	135	1.50	1.50	0.20	0.20	6.75	3.75	0.00	0.00
18	135	1.50	1.50	0.20	0.20	8.25	3.75	0.00	0.00
19	135	1.50	1.50	0.20	0.20	0.75	5.25	0.00	0.00
20	135	1.50	1.50	0.20	0.20	2.25	5.25	0.00	0.00
21	135	1.50	1.50	0.20	0.20	3.75	5.25	0.00	0.00
22	135	1.50	1.50	0.20	0.20	5.25	5.25	0.00	0.00
23	135	1.50	1.50	0.20	0.20	6.75	5.25	0.00	0.00
24	135	1.50	1.50	0.20	0.20	8.25	5.25	0.00	0.00
25	135	1.50	1.50	0.20	0.20	0.75	6.75	0.00	0.00
26	135	1.50	1.50	0.20	0.20	2.25	6.75	0.00	0.00
27	135	1.50	1.50	0.20	0.20	3.75	6.75	0.00	0.00
28	135	1.50	1.50	0.20	0.20	5.25	6.75	0.00	0.00
29	135	1.50	1.50	0.20	0.20	6.75	6.75	0.00	0.00
30	135	1.50	1.50	0.20	0.20	8.25	6.75	0.00	0.00
31	135	1.50	1.50	0.20	0.20	0.75	8.25	0.00	0.00
32	135	1.50	1.50	0.20	0.20	2.25	8.25	0.00	0.00
33	135	1.50	1.50	0.20	0.20	3.75	8.25	0.00	0.00
34	135	1.50	1.50	0.20	0.20	5.25	8.25	0.00	0.00
35	135	1.50	1.50	0.20	0.20	6.75	8.25	0.00	0.00
36	135	1.50	1.50	0.20	0.20	8.25	8.25	0.00	0.00

Boring	:								
Layer No.	Level of layer under ground	Moc compress for	dulus of sibility loading	Modulu compressibi for reloa	s of lity ding	Pois of the	son's ratio soil	Unit of t	weight he soil
I [-]	z [m]		Es [kN/m2]	[kN	Ws /m2]		vs [-]		γs [kN/m3]
1 2 3	1.65 3.00 12.00		200000 200000 14000	20 20 1			0.30 0.30 0.30		18.00 9.00 10.00
Stress	on soil a	against de	epth (Foot	ing No. 1/ 1	Max.	Load):			
Iterat	ion No. found	Depth under dation fo	Stress due to oundation	Stres from neighborin foundation	s m st g s	Sum of resses	St from we	ress soil ight	ratio
	I 	z [m]	SE [kN/m2]	S [kN/m2	D SU] [J=SE+SD [kN/m2]	[kN	SV /m2] 	SU/SV [-]
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.00 0.50 1.00 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 6.50 7.00	64 34 21 15 11 8 6 5 4 3 3 2 2 2 2 1	1 1 2 2 2 1 1 1 1 1 1 1 1	0 2 9 5 8 0 0 0 9 9 8 7 7 7 6 5	64 36 31 30 29 28 26 24 23 22 21 20 19 18 17		4 13 22 30 35 39 44 49 54 59 64 69 74 79 84	17.78 2.82 1.42 1.01 0.84 0.71 0.59 0.50 0.43 0.37 0.32 0.28 0.25 0.22 0.20
Settle Footin Overbu Loadin Contac Modulu	ment calcu g No.: 1 rden press g t pressure s of subg	ulation fo sure e rade react	or rigid c	entric load Q Q Q Q k	 ed fo v [k e [k o [k s [k	ootings :N/m2] = :N/m2] = :N/m2] = :N/m3] =	4 60 64 19074		
Final Settle: Settle: Settle: Settle: Averag	settlement ment of th ment of th ment of th ment of th e settleme	ts of rigine corner: ne corner: ne corner: ne corner: ent	d footing. right up right do left dow left up	: s wn s n s s	1 [c 2 [c 3 [c 4 [c m [c	rm] = rm] = rm] = rm] = rm] =	0.89 0.65 0.34 0.58 0.61		
Immedi Settle Settle Settle Settle Averag	ate settle ment of th ment of th ment of th ment of th e settleme	ement part ne corner: ne corner: ne corner: ne corner: ent	right up right do left dow left up	s wn s n s s	f1 [c f2 [c f3 [c f4 [c mf [c	rm] = rm] = rm] = rm] = rm] =	0.75 0.44 0.26 0.44 0.47		
Footin Overbu Loadin Contac Modulu	g No.: 2 rden press g t pressure s of subgi	sure e rade react	ion	Q Q Q k	v [k e [k o [k s [k	xN/m2] = xN/m2] = xN/m2] = xN/m3] =	4 60 64 9809		
Final Settle Settle Settle Settle Averag	settlement ment of th ment of th ment of th ment of th e settleme	ts of rigine corner: ne corner: ne corner: ne corner: ent	d footing. right up right do left dow left up	: wn S n S S	1 [c 2 [c 3 [c 4 [c m [c	rm] = rm] = rm] = rm] = rm] =	1.07 0.69 0.54 0.92 0.81		
Immedi Settle Settle	ate settle ment of th ment of th	ement part ne corner: ne corner:	s: right up right do	S wn S	f1 [c f2 [c	:m] =	0.90 0.53		

Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf3 Sf4 Smf	[cm] [cm] [cm]	= = =	0.42 0.74 0.65
Footing No.: 3 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 11102
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		1.12 0.70 0.66 1.08 0.89
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.92 0.54 0.52 0.89 0.72
Footing No.: 4 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 7164
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		1.08 0.66 0.70 1.12 0.89
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.89 0.52 0.54 0.92 0.72
Footing No.: 5 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 11804
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.92 0.54 0.69 1.07 0.81
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.74 0.42 0.53 0.90 0.65
Footing No.: 6 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 9223
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up	S1 S2 S3 S4	[cm] [cm] [cm] [cm]	=	0.58 0.34 0.65 0.89

Average settlement	Sm	[cm]	=	0.61
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.44 0.26 0.44 0.75 0.47
Footing No.: 7 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 6937
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.07 0.92 0.54 0.69 0.81
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		0.90 0.74 0.42 0.53 0.65
Footing No.: 8 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 5958
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.27 1.08 0.87 1.06 1.07
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		1.07 0.88 0.72 0.88 0.89
Footing No.: 9 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 9663
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.31 1.09 1.04 1.26 1.18
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		1.10 0.90 0.86 1.06 0.98
Footing No.: 10 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 9155

Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.26 1.04 1.09 1.31 1.18
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		1.06 0.86 0.90 1.10 0.98
Footing No.: 11 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 5934
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.06 0.87 1.08 1.27 1.07
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.88 0.72 0.88 1.07 0.89
Footing No.: 12 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 5738
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.69 0.54 0.92 1.07 0.81
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.53 0.42 0.74 0.90 0.65
Footing No.: 13 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 9155
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.12 1.08 0.66 0.70 0.89
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]	=	0.92 0.89 0.52 0.54 0.72

Footing No.: 14

Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 9663
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.31 1.26 1.04 1.09 1.18
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		1.10 1.06 0.86 0.90 0.98
Footing No.: 15 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 5738
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		1.35 1.30 1.24 1.29 1.30
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		1.13 1.08 1.04 1.08 1.09
Footing No.: 16 Overburden pressure Loading Contact pressure	Qv Qe	[kN/m2] [kN/m2] [kN/m2]	=	4 60 64
Modulus of subgrade reaction	Q0 ks	[kN/m3]	=	5934
Modulus of subgrade reaction Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	00 ks S1 S2 S3 S4 Sm	[kN/m3] [cm] [cm] [cm] [cm] [cm]		1.29 1.24 1.30 1.35 1.30
Modulus of subgrade reaction Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: left down Settlement of the corner: left up Average settlement Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left down Settlement of the corner: left up Average settlement	00 ks S1 S2 S3 S4 Sm Sf1 Sf2 Sf3 Sf4 Smf	[kN/m3] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm		1.29 1.24 1.30 1.35 1.30 1.08 1.04 1.08 1.13 1.09
Modulus of subgrade reaction Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: left down Settlement of the corner: left up Average settlement Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: left down Settlement of the corner: left down Settlement of the corner: left up Average settlement Footing No.: 17 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	SI SI S2 S3 S4 Sm Sf1 Sf2 Sf3 Sf4 Smf Qv Qe Qo ks	[kN/m3] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm		1.29 1.24 1.30 1.35 1.30 1.08 1.04 1.08 1.13 1.09 4 60 64 9223
Modulus of subgrade reaction Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: left down Settlement of the corner: left up Average settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement Footing No.: 17 Overburden pressure Loading Contact pressure Modulus of subgrade reaction Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left up Average settlement	00 ks S1 S2 S3 S4 Sm Sf1 Sf2 Sf3 Sf4 Smf Qv Qe Qo ks S1 S2 S3 S4 Smf Sf2 Sf3 Sf4 Smf Sf2 Sf3 Sf4 Smf Smf Sf4 Smf Sf4 Smf Smf Sf4 Smf Sf4 Smf Sf4 Smf Sf4 Smf Sf4 Smf Sf4 Smf Sf4 Smf Sf4 Smf Sf4 Smf Sf4 Smf Sf4 Sf4 Sf4 Sf4 Sf4 Smf Sf4 Sf4 Sf4 Sf4 Sf4 Sf4 Sf4 Sf4 Sf4 Sf	[kN/m3] [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm		1.29 1.24 1.30 1.35 1.30 1.08 1.04 1.03 1.09 4 60 64 9223 1.09 1.04 1.26 1.31 1.18

Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf3 Sf4 Smf	[cm] [cm] [cm]	= = =	1.06 1.10 0.98
Footing No.: 18 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 11804
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]	=	0.70 0.66 1.08 1.12 0.89
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.54 0.52 0.89 0.92 0.72
Footing No.: 19 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 5958
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		1.08 1.12 0.70 0.66 0.89
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.89 0.92 0.54 0.52 0.72
Footing No.: 20 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 6937
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.26 1.31 1.09 1.04 1.18
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		1.06 1.10 0.90 0.86 0.98
Footing No.: 21 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 9809
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up	S1 S2 S3 S4	[cm] [cm] [cm] [cm]	=	1.29 1.35 1.30 1.24

Average settlement	Sm	[cm]	=	1.30
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		1.08 1.13 1.08 1.04 1.09
Footing No.: 22 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 19074
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.24 1.30 1.35 1.29 1.30
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		1.04 1.08 1.13 1.08 1.09
Footing No.: 23 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 7164
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm]		1.04 1.09 1.31 1.26 1.18
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		0.86 0.90 1.10 1.06 0.98
Footing No.: 24 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 11102
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.66 0.70 1.12 1.08 0.89
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.52 0.54 0.92 0.89 0.72
Footing No.: 25 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 11804

Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.92 1.07 0.69 0.54 0.81
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.74 0.90 0.53 0.42 0.65
Footing No.: 26 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 6937
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.06 1.27 1.08 0.87 1.07
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.88 1.07 0.88 0.72 0.89
Footing No.: 27 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 9223
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		1.09 1.31 1.26 1.04 1.18
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.90 1.10 1.06 0.86 0.98
Footing No.: 28 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 5958
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]	=	1.04 1.26 1.31 1.09 1.18
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.86 1.06 1.10 0.90 0.98

Footing No.: 29

Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 7348
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.87 1.08 1.27 1.06 1.07
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.72 0.88 1.07 0.88 0.89
Footing No.: 30 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	=	4 60 64 5918
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.54 0.69 1.07 0.92 0.81
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.42 0.53 0.90 0.74 0.65
Footing No.: 31 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 6033
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.58 0.89 0.65 0.34 0.61
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.44 0.75 0.44 0.26 0.47
Footing No.: 32 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 5035
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.69 1.07 0.92 0.54 0.81
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down	Sf1 Sf2	[cm] [cm]	=	0.53 0.90

Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf3 Sf4 Smf	[cm] [cm] [cm]	= =	0.74 0.42 0.65
Footing No.: 33 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 6138
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.70 1.12 1.08 0.66 0.89
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		0.54 0.92 0.89 0.52 0.72
Footing No.: 34 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 5870
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.66 1.08 1.12 0.70 0.89
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm]		0.52 0.89 0.92 0.54 0.72
Footing No.: 35 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]		4 60 64 5060
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	S1 S2 S3 S4 Sm	[cm] [cm] [cm] [cm] [cm]		0.54 0.92 1.07 0.69 0.81
Immediate settlement parts: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up Average settlement	Sf1 Sf2 Sf3 Sf4 Smf	[cm] [cm] [cm] [cm] [cm]		0.42 0.74 0.90 0.53 0.65
Footing No.: 36 Overburden pressure Loading Contact pressure Modulus of subgrade reaction	Qv Qe Qo ks	[kN/m2] [kN/m2] [kN/m2] [kN/m3]	= = =	4 60 64 4877
Final settlements of rigid footing: Settlement of the corner: right up Settlement of the corner: right down Settlement of the corner: left down Settlement of the corner: left up	S1 S2 S3 S4	[cm] [cm] [cm] [cm]	= = =	0.34 0.58 0.89 0.65

Average settlement	Sm [cm] = 0.61
Immediate settlement parts:	
Settlement of the corner: right up	Sfl [cm] = 0.26
Settlement of the corner: right down	Sf2 [cm] = 0.44
Settlement of the corner: left down	Sf3 [cm] = 0.75
Settlement of the corner: left up	Sf4 [cm] = 0.44
Average settlement	Smf [cm] = 0.47

9.9	References, codes and recommendations	
[1]	AMANN, P./BRETH, H.: Das Setzungsverhalten der Böden nach Messungen unter einer Frankfurter Hochhaus	
	Vorträge der Baugrundtagung 1972 in Stuttgart, S. 197-210	
[2]	Arbeiten des Hydroprojektes	
	(Dämme aus Material, das an Ort und Stelle gewonnen wurde)	
	Heft 32 (1973), S. 167-178, Moskau	
[3]	Benutzerhandbuch SEGRU Stand: Juli 1975	
	LGA-Grundbauinstitut Nürnberg	
[4]	DIN 1054 mit Beiblatt	
	Baugrund: Zulässige Belastung des Baugrunds	
	Ausgabe November 1976	
	Neuausgabe: DIN 1054 Teil 100, Ausgabe 1996	
	Beuth-Verlag Berlin, Köln	
[5]	DIN 4017 Teil 1	
	Ausgabe September 1974	
	(abgedruckt im Betonkalender 1974, S. 907-926)	
	Verlag W. Ernst & Sohn Berlin, München, Düssseldorf	
[6]	DIN 4017 (Vorentwürfe) Teil 1 und 2 mit Beiblatt	
	Ausgabe September 1977	
	Neuausgabe: DIN 4017 Teil 100, Ausgabe 1996	
	Beuth-Verlag Berlin, Köln	
[7]	DIN 4018 mit Beiblatt	
	Baugrund: Berechnung der Sohldruckverteilung unter Flächengründungen	
	Ausgabe September 1974	
	Beuth-Verlag Berlin	
[8]	DIN 4019	
	Teil 1 mit Beiblatt 1 (Erläuterungen und Berechnungsbeispiele)	

- 9.164 -

Baugrund: Setzungsberechnungen bei lotrechter, mittiger Belastung (Ausgabe September 1974) Teil 2 mit Beiblatt 1 Baugrund: Setzungsberechnungen bei schräg und außermittig wirkender Belastung (Ausgabe Februar 1981) Neuausgabe: DIN 4017 Teil 100, Ausgabe 1996 Beuth-Verlag Berlin, Köln

- [9] KANY, M.: Elektronische Berechnung von Fundamentgruppen mit dem Programm 1066 (Programmbeschreibung)
 1. Auflage 1966, 2. Auflage 1972
 LGA-Eigenverlag Nürnberg
- [10] KANY, M.: Elektronische Berechnung von Fundamentgruppen mit wirtschaftlich optimaler Bemessung Heft 24 (1973) LGA-Grundbauinstitut Nürnberg
- KANY, M.: Berechnung von Flächengründungen 2. Auflage 1974
 Teil 1: Textband, Teil 2: Tabellen- und Kurventafeln
 Verlag W. Ernst & Sohn Berlin, München, Düsseldorf
- [12] SCHLEICHER, F.: Taschenbuch f
 ür Bauingenieure (1949)Springer Verlag Berlin
- [13] SKEMPTON, A. W./Mc DONALD, H.: The Allovable Settlements of Buildings Proc. Inst. Civ. Eng., Band a5 Teil III, London 1957 (Deutsche Quelle: 2)
- [14] SOWJETISCHE Norm I TU 6-48
 (deutschsprachige Quelle: KÉZDI, A.: Handbuch der Bodenmechanik, Band 2, S. 141)
- [15] STEINBRENNER, W.: Tafeln zur Setzungsberechnung Zeitschrift: Straße 1934

- [16] SVEC, /KULCICKIJ, .: Experimentelle Untersuchung der Tiefe, in der sich der Baugrund unter Belastungsplatte zusammendrückt Osnov. Fund. Mech. Grunt. H., 1 / 1970, S. 10-12
- [17] GRASSHOFF, H./KANY, M.: Berechnung von Flächengründungen Beitrag 3.2 im Grundbuchtaschenbuch 4. Auflage, Teil 3 Verlag W. Ernst u. Sohn, Berlin 1992
- [18] BOBE, R./HUBACEK, H.: Bodenmechanik.Bauverlag Wiesbaden/Berlin 1984
- [19] GUSSMANN, P.: Berechnung der Zeitsetzungen.Grundbau-Taschenbuch 4. Auflage Teil 1, Kap. 1.9.Verlag Ernst & Sohn, Berlin 1991
- [20] HORN, A.: Vorbelastung als Mittel zur schnelleren Konsolidierung weicher Böden Zeitschrift Geotechnik 1984/ 3. DGEG
- [21] KOLLBRUNNER, C.F.: Fundation und Konsolidation Schweizer Druck u. Verlagshaus Zürich 1946
- [22] SIMMER, K.: Grundbau 1 (18. Auflage)Verlag Teubner, Stuttgart 1987
- [23] TERZAGHI, K.v./ FRÖHLICH, O.K.: Theorie der Setzung von Tonschichten Verlag Fr. Deuticke, Leipzig/Wien 1936
- [24] Empfehlungen "Verformungen des Baugrunds bei baulichen Anlagen" EVB
 Erarbeitet durch den Arbeitskreis "Berechnungsverfahren" der Deutschen Gesellschaft für Erd- und Grundbau e.V.
 Verlag Ernst u. Sohn Berlin 1993
- [25] KANY, M./ EL GENDY, M.: Computing of beam and slab foundations on three dimensional layered model
 Proc. of 6. International Conf. on Computing in Civil and Building Engineering Berlin 1995

- [26] KANY, M./ EL GENDY, M.: Berechnung der Setzung von Fundamenten Benutzerhandbuch f
 ür die Programmkette SETZ 5.0 Zirndorf, Deutschland, 1996.
- [27] POULOS, H./ DAVIS, E. (1974): Elastic solution for soil and rock mechanics Wiley, New York/ London/ Sydney/ Toronto
- [28] GRABHOFF, H. (1955): Setzungsberechnungen starrer Fundamente mit Hilfe des kennzeichnenden Punktes
 Der Bauingenieur, S. 53-54
- [29] BOWLES, J. (1977): Foundation analysis and design McGraw-Hill, New York
- [30] KANY, M. (1976): Setzungsberechnung mit Verwendung Druckabhängiger Steifemoduln Veröffentlichungen des Grundbauinstitutes der Landesgewerbeanstalt Bayern, Heft 24, Einzelbeiträge, Nürnberg
- [31] EAU (1990): Empfehlungen des Arbeitsausschusses Ufereinfassungen, Seite 10 Berlin/ München/ Düsseldorf
- [32] FRASER, R./ WARDLE, L. (1976): Numerical Analysis of Rectangular Rafts on Layered Foundations
 Géotechnique 26, No. 4, 613-630
- [33] CHOW, Y. (1987): Vertical Deformation of Rigid Foundations of Arbitrary Shape on Layered Soil Media
 International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 11, 1-15
 John Wiley & Sons, Ltd.
- [34] LI, H./ DEMPSEY, J. (1988): Unbounded Contact of a Square Plate on an Elastic Half-Space or a Winkler Foundation
 Journal of Applied Mechanics, 55, 430-436