
Beam Foundations after *Kany* and *El Gendy* by *GEO Tools* (Analysis and Design)

Part II: Calculation Examples

Mahmoud El Gendy Mohamed El Gendy

Copyright © GEOTEC Software Inc. Canada Tele.:+1(587) 332-3323 geotec@geotecsoftware.com www.geotecsoftware.com

Content	Page
10 Beam Foundations after Kany and El Gendy (Calculation Examples)	4
10.1 Introduction	4
10.2 Calculation methods10.2.1 General10.2.2 Definition	4
 10.3 Example 1: Analysis of a raft for four equal walls 10.3.1 Description of the problem 10.3.2 Preparing the calculation	6 6
 10.4 Example 2: Analysis of a bottom slab for an aqueduct 10.4.1 Description of the problem 10.4.2 Preparing the calculation 10.4.3 Hand calculation 	27 27
 10.5 Example 3: Analysis of a raft for two equal walls 10.5.1 Description of the problem	47 47
 10.6 Example 4: Analysis of a raft for three equal walls 10.6.1 Description of the problem 10.6.2 Preparing the calculation 10.6.3 Hand calculation 	67 67
 10.7 Example5: Analysis of a raft for four equal walls 10.7.1 Description of the problem 10.7.2 Preparing the calculation	87 87
10.8 Example 6: Analysis of flexible and rigid beams10.8.1 Description of the problem10.8.2 Hand calculation	108

Preface

Various problems in Geotechnical Engineering can be investigated by *GEO Tools*. *M. Kany* and (*M.* @ *A.*) *El Gendy* developed the original version of *GEO Tools* in *ELPLA* package for analyzing elastic foundation. After the death of *Kany* and (*M. & A.*) *El Gendy* further developed the program to meet the needs of the practice.

This book describes the essential methods used in *GEO Tools* for analyzing beam foundations with verification examples. *GEO Tools* is a simple user interface program and needs little information to define a problem.

There are three soil models with five methods available in *GEO Tools* for analyzing beam foundations. Many test examples are presented to verify and illustrate the soil models and methods for analyzing beam foundations available in *GEO Tools*.

10 Beam Foundations after *Kany and El Gendy* (Calculation Examples)

10.1 Introduction

GEO Tools is a user-friendly computer program. It can be used for analyzing structures with different types of subsoil models. To verify the validity of this computer program, results of numerical examples solved by hand calculation are compared with those obtained by *GEO Tools*. The mathematical solution of the beam on elastic foundation is based on methods of *Kany and El Gendy*.

10.2 Calculation methods

10.2.1 General

It is possible by *GEO Tools* to use the same data for analyzing beam foundations by five different conventional and refined calculation methods based on the three standard subsoil models. The subsoil models for analyzing beam foundations (standard models) available in *GEO Tools* are:

- A Simple assumption model
- B *Winkler*'s model
- C Continuum model

Simple assumption model does not consider the interaction between the beam foundation and the soil. The model assumes a linear distribution of contact pressures beneath the foundation. *Winkler*'s model is the oldest and simplest one that considers the interaction between the beam foundation and the soil. The model represents the soil as elastic springs. Continuum model is the complicated one. The model considers also the interaction between the beam foundation and soil. It represents the soil as a layered continuum medium.

The three standard soil models are described through five different numerical calculation methods. The methods graduate from the simplest one to more complicated one covering the analysis of most common beam foundation problems that may be found in the practice.

According to the three standard soil models (simple assumption model - *Winkler*'s model - Continuum model), five numerical calculation methods are considered to analyze the beam foundation as follows:

- 1 Linear Contact Pressure (Simple assumption model)
- 2 Elastic Beam Foundation using Modulus of Subgrade Reaction by *Kany/ El Gendy* (1995) (*Winkler*'s model)
- 3 Elastic Beam Foundation using Modulus of Compressibility by *Kany* (1974) (Continuum model)
- 4 Rigid Beam Foundation using Modulus of Compressibility by *Kany* (1972) (Continuum model)
- 5 Flexible Beam Foundation using Modulus of Compressibility (Continuum model)

It is also possible to consider irregular soil layers and the thickness of the base beam that varies in each element. Furthermore, the influence of temperature changes and additional settlement on the beam foundation can be taken into account.

10.2.2 Definition

In the analysis, the beam foundation is divided into equal elements according to **Error! Reference s ource not found.** Using the available five calculation methods, the settlement and the contact pressure can be determined in each element.

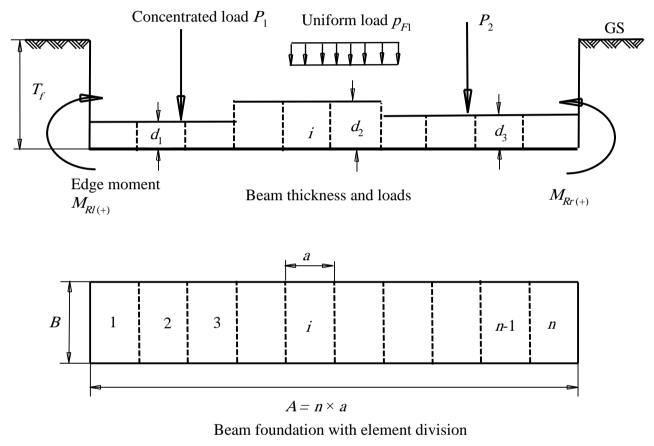


Figure 10.1 Loads, beam thickness und beam foundation with element division

10.3 Example 1: Analysis of a raft for four equal walls

10.3.1 Description of the problem

Figure 10.1 shows plan and section with dimensions and loads for a raft of four equal walls. It is required to find the contact pressure distribution, settlements, moment and shear force diagrams for the raft. The loading and the raft are symmetrical.

Geometry:			
Thickness of the raft	d	=0.6	
Dimensions of the raft	A_{f}	=8×10	$[m^2]$
Groundwater depth under the ground surface	Tw	=1	[m]
Foundation depth under the ground surface	Tf	=2	[m]

Material 1	properties	of the	concrete and	unit	weight	of the water	,
material	properties	or the	conci cic unu	um	" CIGHU	of the water	

Modulus of elasticity of the concrete	$E_b = 2 \times 10^7$	$[kN/m^2]$
Unit weight of the concrete	$\gamma_b=25$	$[kN/m^3]$
Unit weight of the water	$\gamma_w = 10$	[kN/ m ³]

Soil properties

Modulus of subgrade reaction of the soil $k_s = 20000 \text{ [kN/m^3]}.$

10.3.2 Preparing the calculation

The raft can be regarded as a beam on elastic foundation subjected to:

- A uniformly distributed loading p_f equal to the weight of the raft itself minus the uplift pressure from the ground water.
- Four concentrated forces from four walls $P_1 = P_4 = 200 \text{ [kN/m]}$ and $P_2 = P_3 = 300 \text{ [kN/m]}$.

Computing the uniform load on the raft

Own weight of the raft	$w_o = \gamma_b \times d = 25 \times 0.6$	=15	$[kN/m^2]$
Up lift pressure	$w_w = \gamma_w \times (T_f - T_w) = 10(2 - 1)$	=-10	$[kN/m^2]$
Total	$p_f =$	=5	$[kN/m^2]$

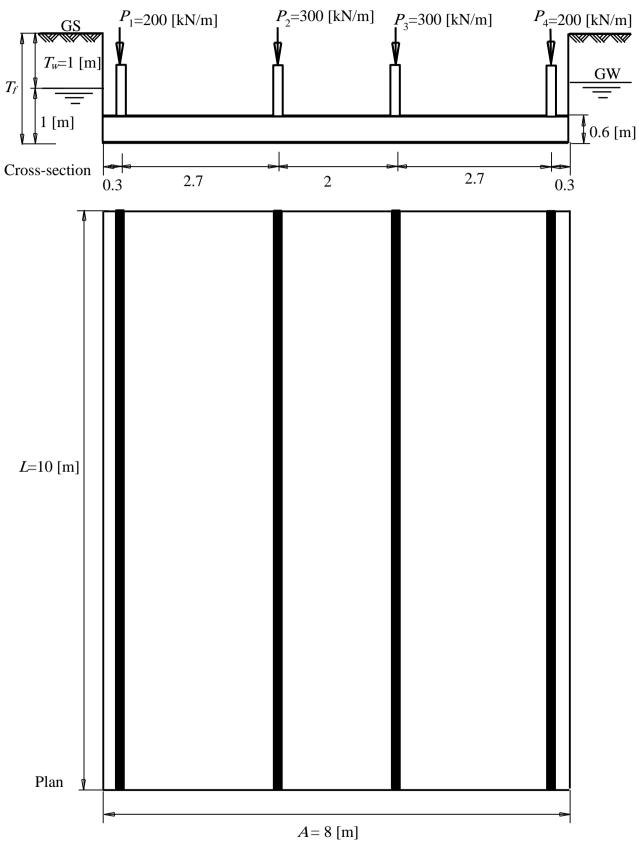


Figure 10.1 Raft of four equal walls

10.3.3 Hand calculation

Assume one-meter strip width from the raft and consider it as a beam on elastic foundation. The beam is divided into eight equal elements, each 1 [m] long (Figure 10.2). Because of the symmetry of the system, the analysis can be carried out by considering only half of the beam. Hence, the total number of equations is reduced to four.

According to *Kany/ El Gendy* (1995), the analysis of a beam on elastic foundation is carried out in the following steps:

10.3.3.1 Calculation of ui, vi and wi:

$$u_{i} = \frac{1}{2} \left(1 + \frac{I_{i}}{I_{i-1}} \right)$$
$$v_{i} = \frac{1}{4} \left(\frac{I_{i}}{I_{i-1}} + 14 + \frac{I_{i}}{I_{i+1}} \right)$$
$$w_{i} = \frac{1}{2} \left(1 + \frac{I_{i}}{I_{i+1}} \right)$$

For a constant beam, moment of inertia $I_i = I$, then

$$u_{i} = \frac{1}{2} \left(1 + \frac{I}{I} \right) = \frac{1}{2} \times 2 = 1$$
$$v_{i} = \frac{1}{4} \left(\frac{I}{I} + 14 + \frac{I}{I} \right) = \frac{1}{4} \times 16 = 4$$
$$w_{i} = \frac{1}{2} \left(1 + \frac{I}{I} \right) = \frac{1}{2} \times 2 = 1$$

10.3.3.2 Moment of inertia I_i and beam stiffness a_i :

$$I_i = I = \frac{Bd_i^3}{12} = \frac{1 \times 0.6^3}{12} = 0.018 [\text{m}^4]$$

and

$$\alpha_i = \alpha = \frac{a^4 B}{E_b I} = \frac{1^4 \times 1}{(2 \times 10^7)(0.018)} = \frac{1}{360000} [\text{m}^3/\text{kN}]$$

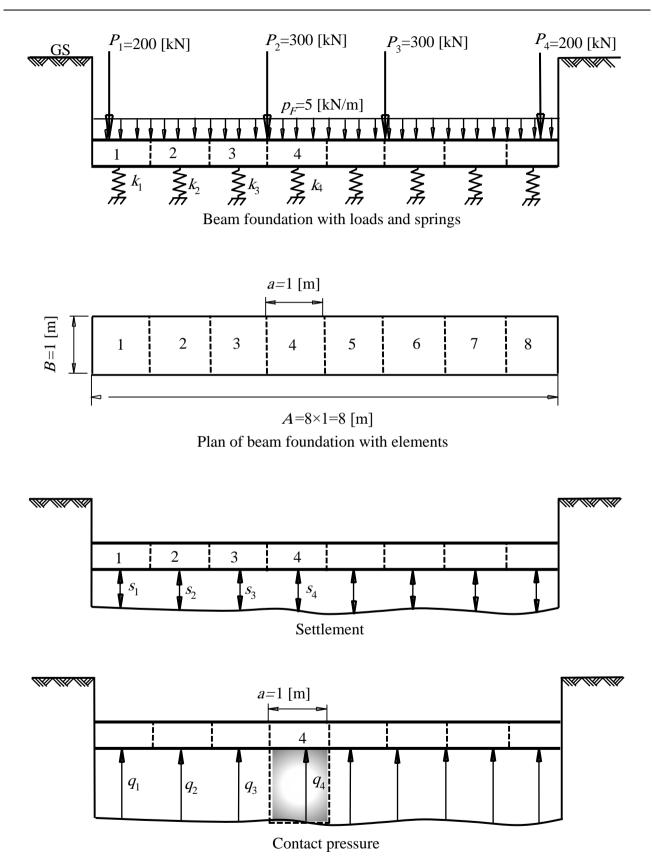


Figure 10.2 One meter strip width of the raft

10.3.3.3 Determining external moments $M_i^{(l)}$

The external moments $M_i^{(l)}$ at points 2, 3, 4 and 5 are:

$$M_{1}^{(l)} = 0$$

$$M_{2}^{(l)} = 200(1.5 - 0.3) + 5\frac{1.5^{2}}{2} = 245.625 \text{ [kN.m]}$$

$$M_{3}^{(l)} = 200(2.5 - 0.3) + 5\frac{2.5^{2}}{2} = 455.625 \text{ [kN.m]}$$

$$M_{4}^{(l)} = 200(3.5 - 0.3) + 5\frac{3.5^{2}}{2} + 300 \times 0.5 = 820.625 \text{ [kN.m]}$$

$$M_{5}^{(l)} = 200(4.5 - 0.3) + 5\frac{4.5^{2}}{2} + 300 \times 1.5 = 1340.625 \text{ [kN.m]}$$

10.3.3.4 Determining the right hand side R_i

The right hand side R_i of the contact pressure equation is:

$$R_{i} = \left(M^{(l)}_{i-1} + 4M^{(l)}_{i} + M^{(l)}_{i+1}\right) \frac{a^{2}}{6EI_{i}}$$

$$R_{i} = \left(M^{(l)}_{i-1} + 4M^{(l)}_{i} + M^{(l)}_{i+1}\right) \frac{1^{2}}{6 \times 2 \times 10^{7} \times 0.018}$$

$$R_{i} = \frac{1}{2160000} \left(M^{(l)}_{i-1} + 4M^{(l)}_{i} + M^{(l)}_{i+1}\right)$$

Apply the above equation at points 2, 3 and 4:

$$R_{2} = \frac{1}{2160000} (0 + 4 \times 245.625 + 455.625) = \frac{1438.125}{216000}$$

$$R_{3} = \frac{1}{2160000} (245.625 + 4 \times 455.625 + 820.625) = \frac{2888.75}{216000}$$

$$R_{4} = \frac{1}{2160000} (455.625 + 4 \times 820.625 + 1340.625) = \frac{5078.75}{216000}$$

10.3.3.5 Determining contact pressures

The contact pressure equation is:

$$\left(\frac{1}{k_{i+1}}\right)q_{i+1} - \left(\frac{2}{k_i} - \frac{\alpha_i}{6}w_i\right)q_i + \left(\frac{1}{k_{i-1}} + \frac{\alpha_i}{6}(v_i + 2w_i)\right)q_{i-1} + \frac{\alpha_i}{6}\left(\sum_{j=1}^{i-2}\left[(i-j-1)u_i + (i-j)v_i + (i-j+1)w_i\right]q_j\right) = R_i$$

$$\left(\frac{1}{k}\right)q_{i+1} - \left(\frac{2}{k} - \frac{\alpha}{6}\right)q_i + \left(\frac{1}{k} + \alpha\right)q_{i-1} + \alpha\left(\sum_{j=1}^{i-2}(i-j)q_j\right) = R_i$$
$$\left(\frac{1}{20000}\right)q_{i+1} - \left(\frac{2}{20000} - \frac{1}{360000 \times 6}\right)q_i + \left(\frac{1}{20000} + \frac{1}{360000}\right)q_{i-1} + \frac{1}{360000}\left(\sum_{j=1}^{i-2}(i-j)q_j\right) = R_i$$

or

108
$$q_{i+1} - 215 q_i + 114 q_{i-1} + 6 \left(\sum_{j=1}^{i-2} (i-j) q_j \right) = 2160000 R_i$$

Apply the above equation at points 2, 3 and 4:

108
$$q_3$$
-215 q_2 +114 q_1 =1438.125
108 q_4 -215 q_3 +114 q_2 +12 q_1 =2888.75
-107 q_4 -114 q_3 +12 q_2 +18 q_1 =5078.75

There are four unknown q_1 , q_2 , q_3 , and q_4 , so a farther equation is required. This can be obtained by considering the overall equilibrium of vertical forces.

$$a \times B(q_1 + q_2 + q_3 + q_4 + q_5 + q_6 + q_7 + q_8) = P_1 + P_2 + P_3 + P_4 + A \times B \times P_f$$

or

$$q_1 + q_2 + q_3 + q_4 = 520$$

Contact pressure equations in matrix form:

1	1	1	1	$\left[q_{1} \right]$		520	
114	- 215	108	0	$ q_2 $	[1438.125	
12	114	- 215	108	$]q_3$		2888.75	ſ
18	12	114	-107	$\left q_4 \right $	J	5078.75	

Solving the above system of linear equations using *Gaussian*'s elimination to obtain the contact pressures q_1 , q_2 , q_3 , and q_4 .

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2.886 & -0.053 & -1 \\ 0 & 8.5 & -18.917 & 8 \\ 0 & -0.333 & 5.333 & -6.944 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} 520 \\ -507.385 \\ -279.271 \\ -237.845 \end{bmatrix}$$

$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$	0 1 0 0	0.982 0.018 - 2.244 - 16.018	$ \begin{array}{c} 0.653\\ 0.347\\ 0.594\\ 20.486 \end{array} \right] \left\{ \begin{array}{c} q_1\\ q_2\\ q_3\\ q_4 \end{array} \right\} = \left\{ \begin{array}{c} 344.191\\ 175.809\\ -208.664\\ 537.739 \end{array} \right\} $
$\left[\begin{array}{c}1\\0\\0\\0\end{array}\right]$	0 1 0 0		$ \begin{array}{c} 0.913\\ 0.352\\ -0.265\\ -1.014 \end{array} \begin{vmatrix} q_1\\ q_2\\ q_3\\ q_4 \end{vmatrix} = \begin{cases} 252.877\\ 174.135\\ 92.988\\ -126.559 \end{cases} $
	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $q_{1} = q_{2} = q_{3} = q_{4} = q_{4} = q_{4}$	$ \begin{array}{c cccc} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \begin{bmatrix} q \\ q \\ q \\ q \\ 139.925 \\ 130.202 \\ 126.063 \\ 124.811 \end{bmatrix} $	$\begin{vmatrix} 2 \\ 3 \\ 3 \end{vmatrix} = \begin{vmatrix} 130.202 \\ 126.063 \\ 124.044 \end{vmatrix}$

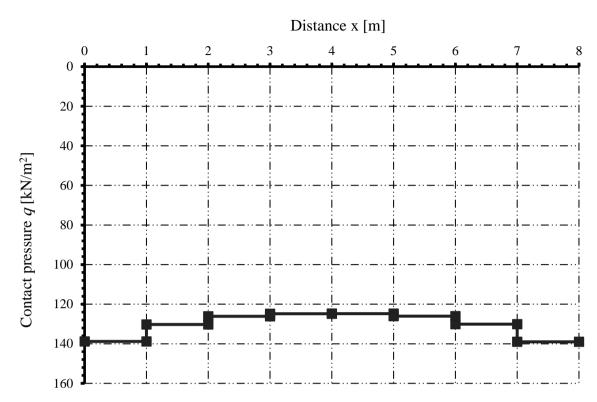
10.3.3.6 Determining settlements s_i

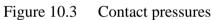
The settlement s_i can be given by:

$$s_{i} = \frac{q_{i}}{k_{i}} = \frac{q_{i}}{20000} \text{ [m]}$$

$$s_{1} = 0.70 \text{ [cm]}$$

$$s_{2} = 0.65 \text{ [cm]}$$


$$s_{3} = 0.63 \text{ [cm]}$$


$$s_{4} = 0.62 \text{ [cm]}$$

The contact pressure distribution, settlement, moment and shear force diagrams for the raft are shown in Figure 10.3 to Figure 10.6. Once the internal forces are obtained at various sections, the design of the raft can be completed in the normal manner.

10.3.3.7 Computer calculation

The input data and results of *GEO Tools* are presented on the pages 10.15 to 10.26. By comparison, one can see an agreement with the hand calculation.

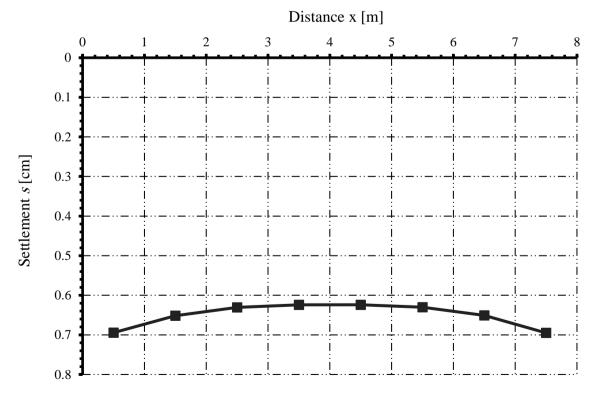
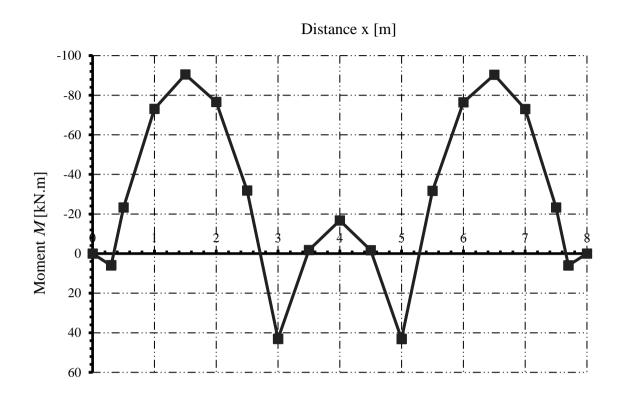



Figure 10.4 Settlements

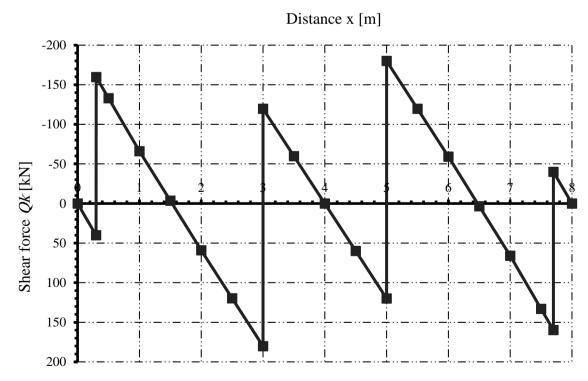


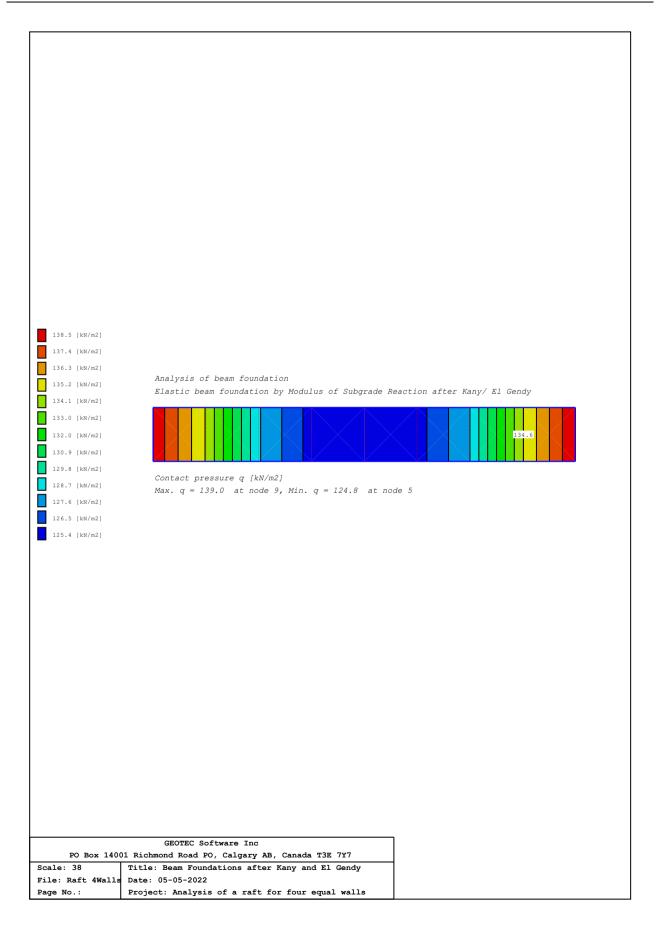
Figure 10.6 Shear forces

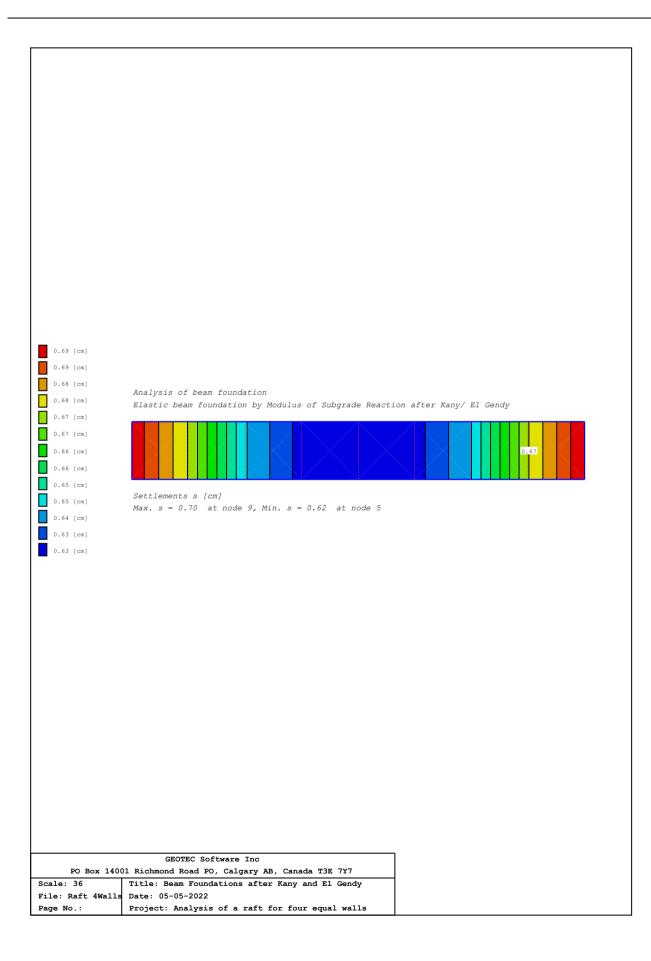
* * * * *		**************** GEO Tools Version 1	2.3			* * * *		
Title Date: Proje	********* Beam For 05-05-202	sis of a raft for f lls	************ y and El (our equal	Gendy walls	*****			
Analy: Calcui	sis of bea lation me	am a foundation		n by Mo	dulus of	E Subgrade	e Re	eaction after Kany/ El Gendy
Data:								
Main S	Soil Data	:						
	-	oth under the grour th under ground sur		Tw Tf		[m] [m]	=	1.00 2.00
Summa	ry of load	ding:						
Load (weight on Footing dwater fo: load	2		Pe Pa Pw Po=P	e+Pa-Pw	[kN] [kN]	=	120 920 80 1040
	dwater pro ge soil p:			Qw Qo		[kN/m2] [kN/m2]		
Beam 1	Material:							
		sticity of the conc footing concrete	rete	Eb Yb		[kN/m2] [kN/m3]		2000000.00 25.0
Dimen	sions:							
Beam Moment Beam Beam Beam Lengtl Elemen	thickness t of iner stiffness length (lo width (tra h/width ra nt size	tia of the beam ongitudinal) ansversal)	nder grour	nd Tk d I αB A B A/B a N		[m] [m]	= = = = =	1.40 0.60 0.018 2.78E-06 8.00 1.00 8.00 1.00 8
Loads	:							
Point	Loads:							
No.	Load value	Load position from the left edge	Column side	Column side				
I [-]	P [kN]		a [m]	b [m]		Lb [-]		
1 2 3 4	200 300 300 200	0.30 3.00 5.00 7.70	0.20 0.20 0.20 0.20 0.20	1.00 1.00 1.00 1.00		W1 W2 W3 W4		
Distr	ibuted Loa	ads:	· _ _					
 No. [-]	Load value Pf [kN/m2]		Load end the left		Load ty	 /pe [-]		
 1 2	-10 15	0.00		8.00		vater pres	su	re)

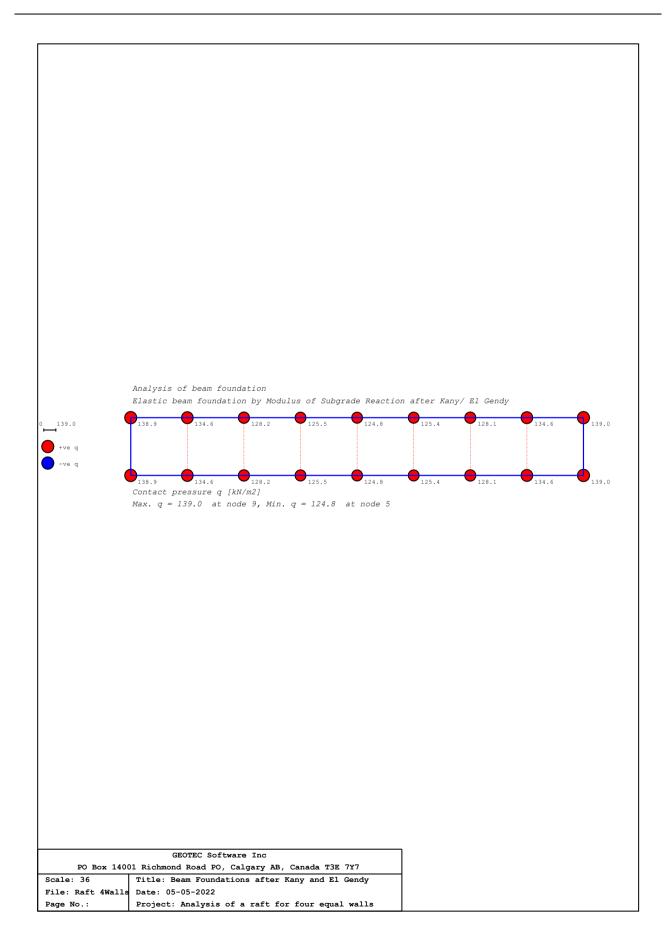
Right sides of the system of equations:

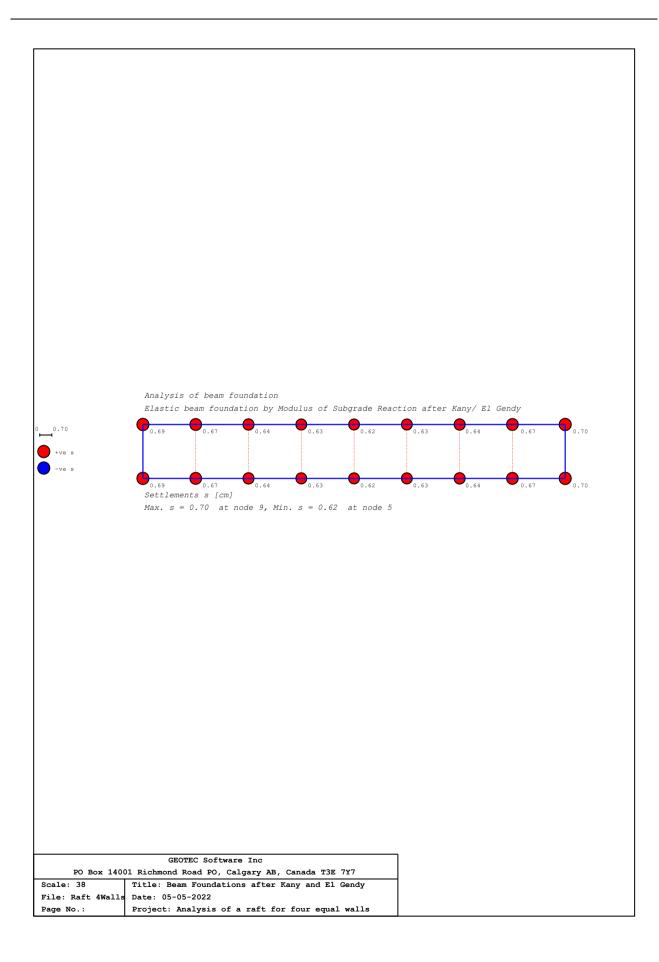
Element	Right sides of the
No.	system of equations
I	Rv
[-]	[m]
1	4.16E+03
2	1.04E+03
3	6.658E-04
4	1.3374E-03
5	2.3513E-03
6	3.7957E-03
7	5.6707E-03
8	7.9068E-03

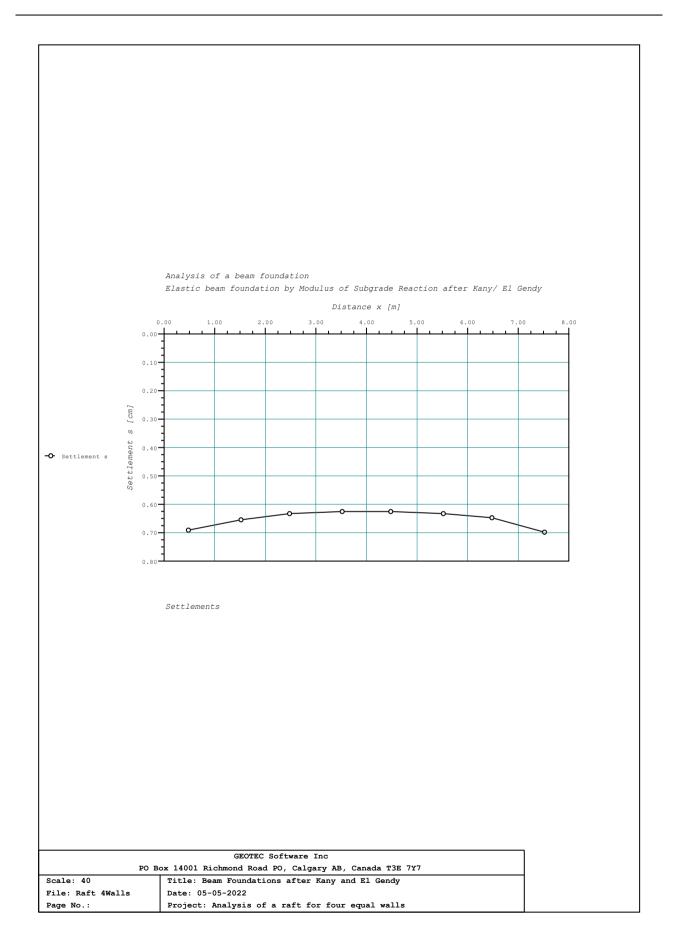
Settlements/ Contact pressures/ Moduli of subgrade reactions:

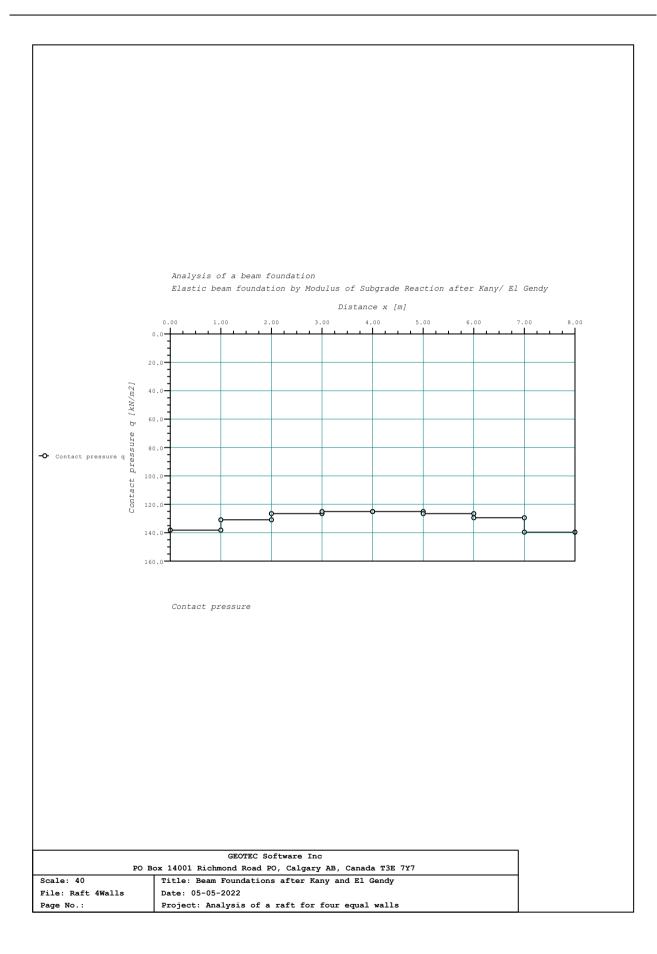

Element No.	Contact pressure	Settlement	Modulus of subgrade
NO.	pressure		reaction
I	q	S	ks
[-]	[kN/m2]	[cm]	[kN/m3]
1	138.9	0.69	20000
2	130.3	0.65	20000
3	126.1	0.63	20000
4	124.8	0.62	20000
5	124.8	0.62	20000
6	126.0	0.63	20000
7	130.1	0.65	20000
8	139.0	0.70	20000

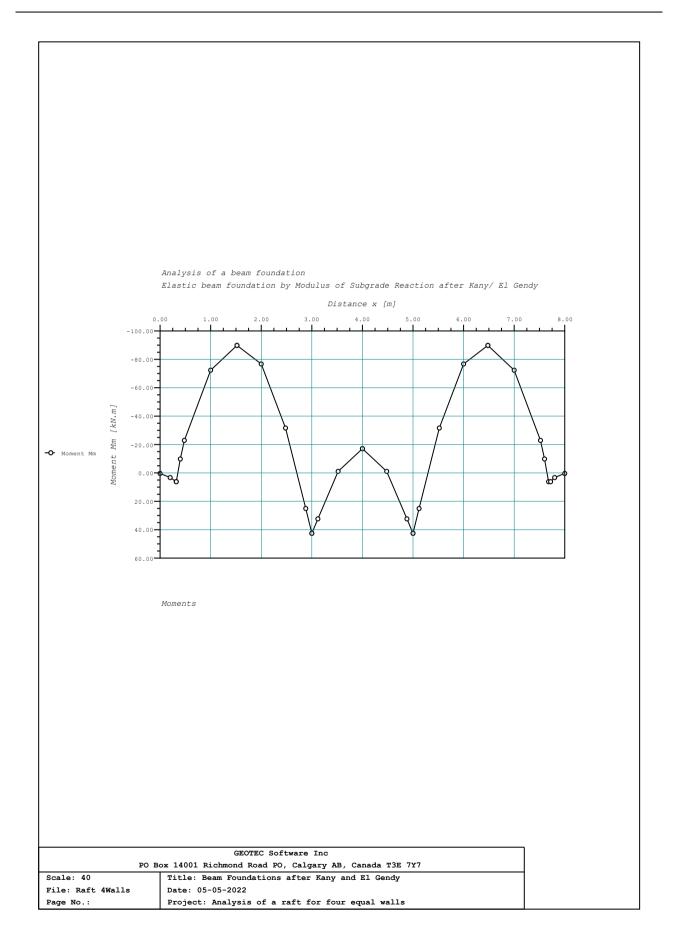

Moments/ Shear Forces:

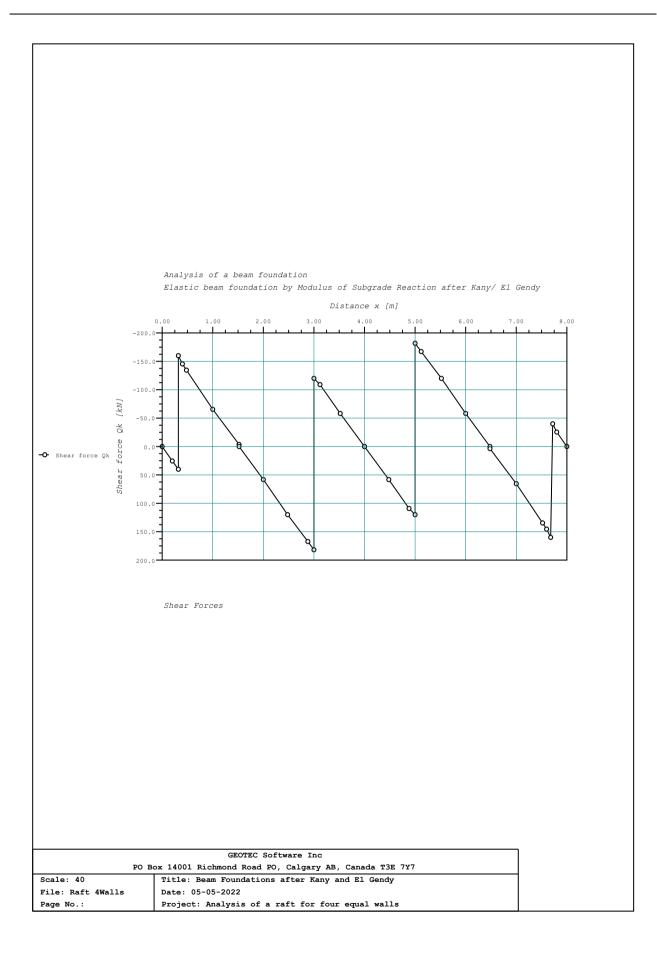

No. I	Distance x	Distance	Moment Mm	Shear force Qk
[-]	[m]	[-]	[kN.m]	[kN/m]
1	0.00		0.0	0.0
2	0.20	CL	2.7	26.8
3	0.30	CC	6.0	40.2
4	0.30	CC	5.9	-159.7
5	0.40	CR	-9.3	-146.5
6	0.50	011	-23.3	-133.1
7	1.00		-73.1	-66.1
8	1.50		-90.5	-3.5
9	1.53	MM	-90.5	0.0
10	2.00		-76.6	59.1
11	2.50		-31.9	119.7
12	2.90	CL	25.7	168.1
13	3.00	CC	43.1	180.2
14	3.00	CC	43.0	-119.6
15	3.10	CR	31.7	-107.8
16	3.50		-1.8	-59.9
17	4.00	MM	-16.7	0.0
18	4.00		-16.7	0.1
19	4.50		-1.7	60.0
20	4.90	CL	31.8	107.9
21	5.00	CC	43.2	119.9
22	5.00	CC	43.0	-180.0
23	5.10	CR	25.8	-168.0
24	5.50		-31.7	-119.6
25	6.00		-76.4	-59.1
26	6.47	MM	-90.4	0.0
27	6.50		-90.3	3.4
28	7.00		-73.0	66.0
29	7.50	CT.	-23.2	133.0
30	7.60	CL	-9.3	146.4
31 32	7.70 7.70	CC CC	6.0 6.0	159.8 -40.1
32 33	7.80		6.0 2.7	
33 34	8.00	CR	2.7	-26.8

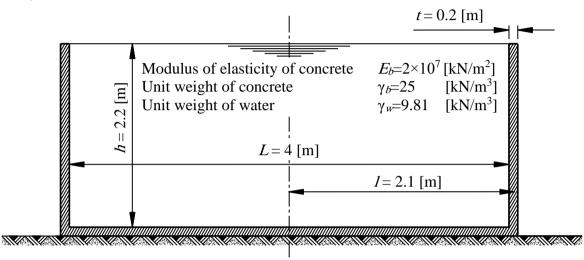

	Analysis of beam foundation
	Elastic beam foundation by Modulus of Subgrade Reaction after Kany/ El Gendy
✓ pf [kN/m2]	
	O _{200,0} 15,0 O _{200,0} O _{200,0}
Pv [kN]	300.0 300.0 300.0 10.0
	Sustem of loading
	System of loading
PD Box 140	GEUTEC Software Inc
	GEOTEC Software Inc 11 Richmond Road FO, Calgary AB, Canada T3E 7Y7
Scale: 38	GEOTEC Software Inc 11 Richmond Road PO, Calgary AB, Canada T3E 7Y7 Title: Beam Foundations after Kany and El Gendy
Scale: 38	GEOTEC Software Inc 11 Richmond Road FO, Calgary AB, Canada T3E 7Y7


	Analysis of beam foundation	
	Elastic beam foundation by Modulus of Subgrade Reaction after Kany/ El Gendy	
_		
G1 (t=0.6[m])		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 200	
	Flement groups t [m]	
	Element groups t [m]	
	Element groups t [m] No. of element groups = 1	
	No. of element groups = 1	
	No. of element groups = 1	
	No. of element groups = 1	
Scale: 36	No. of element groups = 1	
	No. of element groups = 1	









10.4 Example 2: Analysis of a bottom slab for an aqueduct

10.4.1 Description of the problem

Figure 10.7 shows a cross-section of a concrete aqueduct filled with water. It is required to find the contact pressure distribution and the settlement under the bottom slab. The loading and the bottom slab are symmetrical.

Modulus of subgrade reaction of the soil $k = 50000 \text{ [kN/m^3]}$

Figure 10.7 Cross-section of the aqueduct with dimensions

Geometry:

The bottom slab and the wall of the aqueduct have a thickness of d = 0.2 [m]. The cross section dimensions of the aqueduct are = 4.2 [m] × 2.2 [m].

Material properties of the concrete and the water

Modulus of elasticity of the concrete	$E_b = 2 \times 10^7$	[kN/m ²]
Unit weight of the concrete	$\gamma_b = 25$	[kN/m ³]
Unit weight of the water	$\gamma_w = 9.81$	[kN/m ³]

Soil properties

```
Modulus of subgrade reaction of the soil k_s=50000 [kN/m<sup>3</sup>].
```

10.4.2 Preparing the calculation

The bottom slab can be regarded as a beam on elastic foundation subjected to:

- A uniformly distributed loading p_f equal to the weight of the bottom slab itself plus the weight of the water.
- Two concentrated forces P_1 and P_2 due to the weight of the sidewalls.
- Two moments M_l and M_r due to the water pressure on the walls.

Computing the loads on the bottom slab

Own weight of the bottom slab Own weight of the water Total	$w_o = \gamma_b \times d = 25 \times 0.2$ $w_w = \gamma_w \times h = 9.81 \times 2.2$ $p_f =$	=5 =21.582 =26.582	[kN/m ²] [kN/m ²] [kN/m ²]
Own weight of the wall	$P_1 = P_2 = \gamma_b \times d \times h = 25 \times 0.2 \times 2$.3=11.5	[kN/m]
Moment due to water pressure	$M_{rl}=M_{rr}=-\gamma_w \times h^3/6=-9.81 \times 2$	$2.3^{3}/6 = -17.41$	[kN.m/m]

Assume one-meter strip width from the bottom slab and consider it as a beam on elastic foundation. The beam is divided into eight equal elements, each 0.525 [m] long (Figure 10.8). Because of the symmetry of the system, the analysis can be carried out by considering only half of the beam. Hence, the total number of equations is reduced to four.

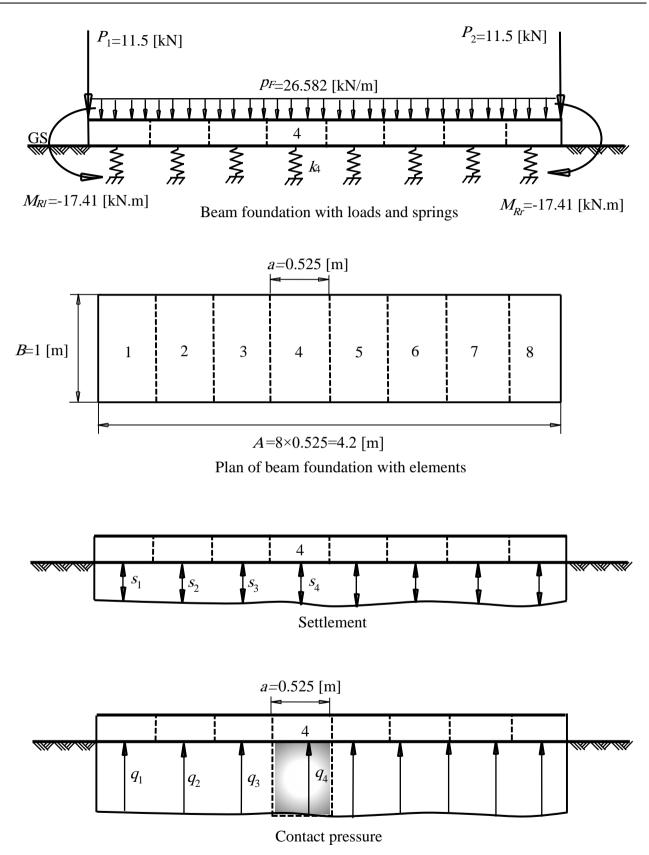


Figure 10.8 One meter strip width of the foundation

10.4.3 Hand calculation

According to *Kany/ El Gendy* (1995), the analysis of a beam on elastic foundation is carried out in the following steps:

10.4.3.1 Moment of inertia I and beam stiffness a:

$$I = \frac{Bd_i^3}{12} = \frac{1 \times 0.2^3}{12} = 0.000667 \,[\text{m}^4]$$

and

$$\alpha = \frac{a^4 B}{E_b I} = \frac{0.525^4 \times 1}{(2 \times 10^7)(0.000667)} = 5.7 \times 10^{-6} \text{ [m}^3/\text{kN]}$$

10.4.3.2 Determining external moments $M_i^{(l)}$

The external moments $M_i^{(l)}$ at points 2, 3, 4 and 5 are:

$$M_{1}^{(l)} = 17.41 \text{ [kN.m]}$$

$$M_{2}^{(l)} = 17.41 + 11.5 \times 1.50 \times 525 + 26.582 \frac{(1.5 \times 0.525)^{2}}{2} = 34.71 \text{ [kN.m]}$$

$$M_{3}^{(l)} = 17.14 + 11.5 \times 2.50 \times 525 + 26.582 \frac{(2.5 \times 0.525)^{2}}{2} = 55.40 \text{ [kN.m]}$$

$$M_{4}^{(l)} = 17.41 + 11.5 \times 3.50 \times 525 + 26.582 \frac{(3.5 \times 0.525)^{2}}{2} = 83.42 \text{ [kN.m]}$$

$$M_{5}^{(l)} = 17.41 + 11.5 \times 4.50 \times 525 + 26.582 \frac{(4.5 \times 0.525)^{2}}{2} = 118.76 \text{ [kN.m]}$$

10.4.3.3 Determining the right hand side R_i

The right hand side R_i of the contact pressure equation is:

$$R_{i} = \left(u_{i} M^{(l)}_{i-1} + v_{i} M^{(l)}_{i} + w_{i} M^{(l)}_{i+1}\right) \frac{a^{2}}{6E I_{i}}$$

$$R_{i} = \left(M^{(l)}_{i-1} + 4 M^{(l)}_{i} + M^{(l)}_{i+1}\right) \frac{0.525^{2}}{6 \times 2 \times 10^{70} \times 0.000667}$$

$$R_{i} = 3.445 \times 10^{-6} \left(M^{(l)}_{i-1} + 4 M^{(l)}_{i} + M^{(l)}_{i+1}\right)$$

Apply the above equation at points 2, 3 and 4:

$$R_{2} = 3.445 \times 10^{-6} (17.1 + 4 \times 34.399 + 55.09) = 7.228 \times 10^{-4}$$

$$R_{3} = 3.445 \times 10^{-6} (34.399 + 4 \times 55.09 + 83.107) = 1.164 \times 10^{-3}$$

$$R_{4} = 3.445 \times 10^{-6} (55.09 + 4 \times 83.107 + 118.451) = 1.743 \times 10^{-3}$$

-10.30-

10.4.3.4 Determining contact pressures

The contact pressure equation is:

$$\left(\frac{1}{k}\right)q_{i+1}-\left(\frac{2}{k}-\frac{\alpha}{6}\right)q_i+\left(\frac{1}{k}+\alpha\right)q_{i-1}+\alpha\left(\sum_{j=1}^{i-2}(i-j)q_j\right)=R_i$$

$$\left(\frac{1}{50000}\right)q_{i+1} - \left(\frac{2}{50000} - \frac{5.7 \times 10^{-6}}{6}\right)q_i + \left(\frac{1}{50000} + 5.7 \times 10^{-6}\right)q_{i-1} + 5.7 \times 10^{-6}\left(\sum_{j=1}^{i-2} (i-j)q_j\right) = R_i$$

or

$$q_{i+1}$$
-1.953 q_i +1.285 q_{i-1} +0.285 $\left(\sum_{j=1}^{i-2} (i-j)q_j\right)$ = 50000 R_i

Apply the above equation at points 2, 3 and 4:

$$q_3 - 1.953 \quad q_2 + 1.285 \quad q_1 = 36.45$$

 $q_4 - 1.953 \quad q_3 + 1.285 \quad q_2 + 0.57 \quad q_1 = 58.5$
 $- 0.953q_4 + 1.285 \quad q_3 + 0.57 \quad q_2 + 0.855 \quad q_1 = 87.5$

There are four unknown q_1 , q_2 , q_3 , and q_4 , so a farther equation is required. This can be obtained by considering the overall equilibrium of vertical forces.

$$a \times B(q_1 + q_2 + q_3 + q_4 + q_5 + q_6 + q_7 + q_8) = P_1 + P_2 + A \times B \times P_f$$

or

$$q_1 + q_2 + q_3 + q_4 = 128.23$$

Contact pressure equations in matrix form:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1.285 & -1.953 & 1 & 0 \\ 0.57 & 1.285 & -1.953 & 1 \\ 0.855 & 0.57 & 1.285 & -0.953 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} 128.23 \\ 36.14 \\ 58.2 \\ 87.15 \end{bmatrix}$$

Solving the above system of linear equations to obtain the contact pressures q_1 , q_2 , q_3 , and q_4 .

$$q_1 = 66.24 \text{ [kN/m²]}$$

 $q_2 = 33.74 \text{ [kN/m²]}$
 $q_3 = 17.22 \text{ [kN/m²]}$
 $q_4 = 11.02 \text{ [kN/m²]}$

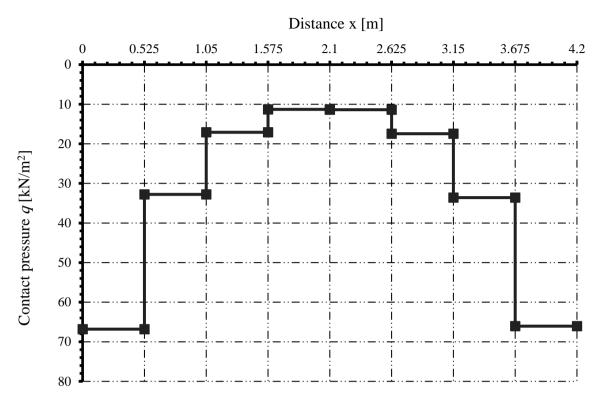
10.4.3.5 Determining settlements s_i

The settlement s_i can be given by:

$$s_{i} = \frac{q_{i}}{k_{i}} = \frac{q_{i}}{50000} \text{ [m]}$$

$$s_{1} = 0.13 \text{ [cm]}$$

$$s_{2} = 0.07 \text{ [cm]}$$


$$s_{3} = 0.03 \text{ [cm]}$$

$$s_{4} = 0.02 \text{ [cm]}$$

The contact pressure distribution, settlement, moment and shear force diagrams for the raft are shown in Figure 10.9 to Figure 10.12. Once the internal forces are obtained at various sections, the design of the raft can be completed in the normal manner.

10.4.3.6 Computer calculation

The input data and results of *GEO Tools* are presented on the pages 10.35 to 10.46. By comparison, one can see an agreement with the hand calculation.

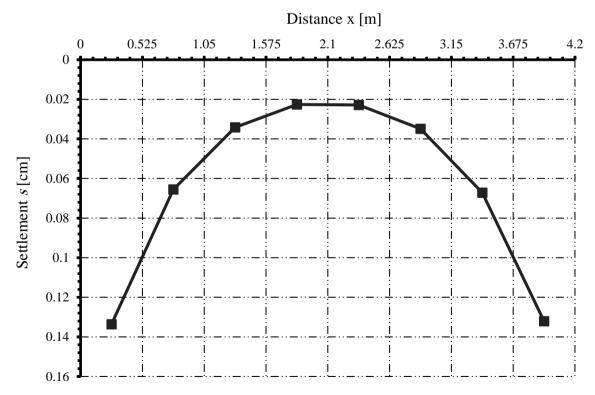


Figure 10.10 Settlements

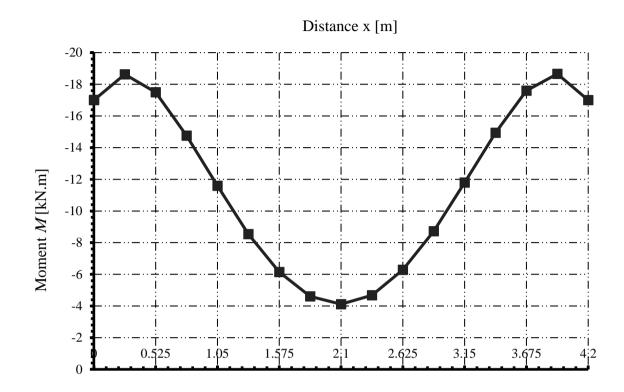


Figure 10.11 Moments

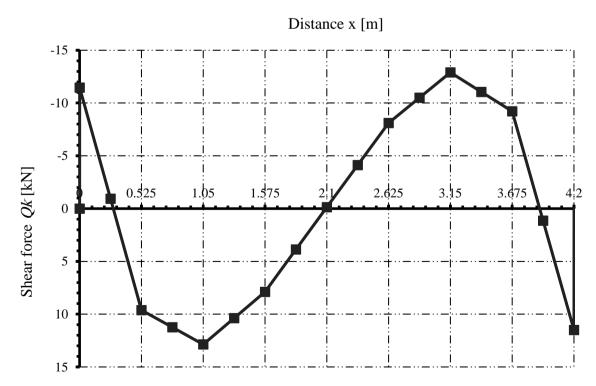


Figure 10.12 Shear forces

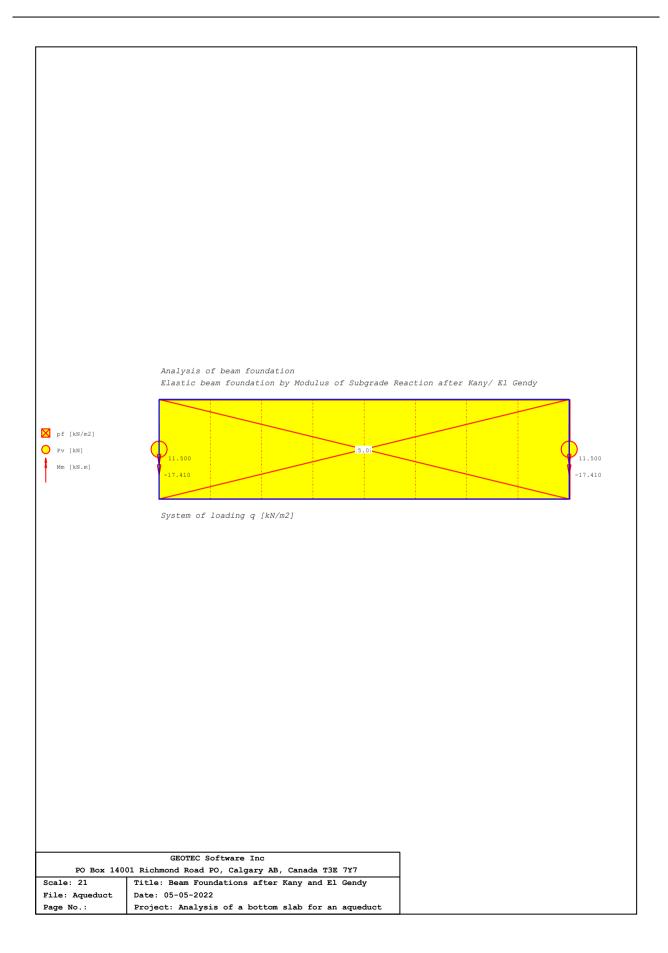
Analysis of a beam foundation Calculation method: Elastic beam foundation			Reaction after Kany/ El Gendy		
Data:					
Main Soil Data:					
Groundwater depth under the ground surface Foundation depth under ground surface	Tw Tf		= 0.00 = 0.00		
Summary of loading:					
Self weight		[kN]	= 21.000		
Load on Footing Groundwater force	Pa Pw	[kN] [kN]	= 113.644 = 0.000		
Total load	Po=Pe+Pa-Pw				
Groundwater pressure Average soil pressure	Qw Qo	[kN/m2] [kN/m2]			
Beam Material:					
Modulus of elasticity of the concrete Unit weight of footing concrete	Eb Yb	[kN/m2] [kN/m3]	= 2000000.00 = 25.0		
Dimensions:					
Depth of the foundation surface under ground Beam thickness Moment of inertia of the beam Beam stiffness Beam length (longitudinal) Beam width (transversal)	Tk d I αB A B	[m4] 1/[kN/m3] [m]	= -0.20 = 0.20 = 0.000667 = 5.70E-06 = 4.20 = 1.00		
Length/width ratio	A/B		= 4.20		
Element size Number of elements of the beam	a N	[m] [-]	= 0.52 = 8		
Loads:					
Edge moments:					
Edge moment left (clockwise) Edge moment right (counterclockwise)	Mrl Mrr	[kN.m] [kN.m]	= -17.41 = -17.41		
Point Loads:					
No. Load Load position Column C value from the side left edge	olumn Col side la	umn bel			
I P Xp a [-] [kN] [m] [m]	b [m]	Lb [-]			
1 11.500 0.00 0.20 2 11.500 4.20 0.20	1.00 1.00	 W1 W2			

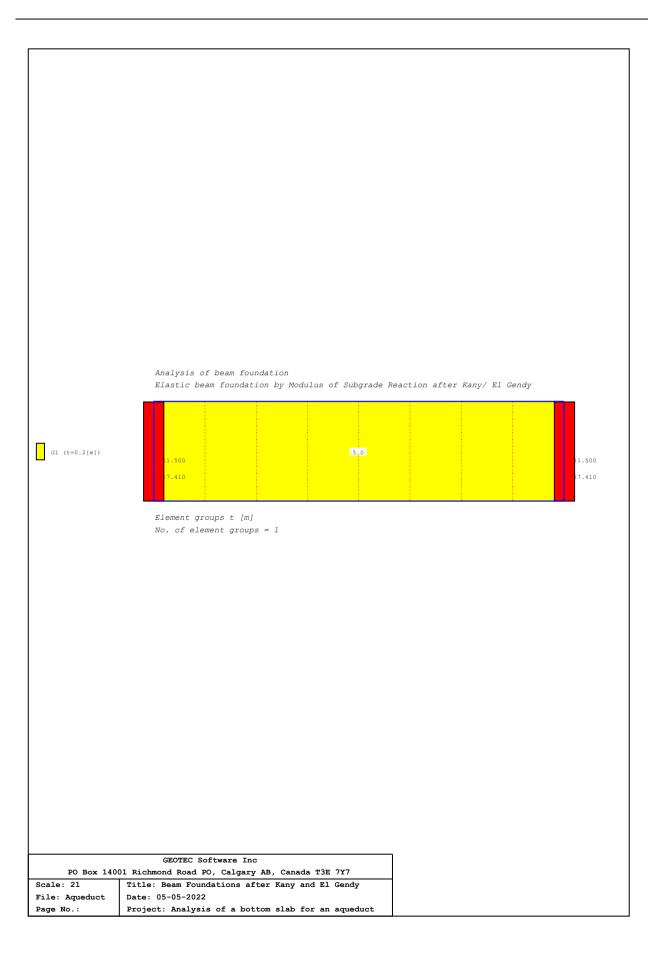
Analysis of Beam Foundations

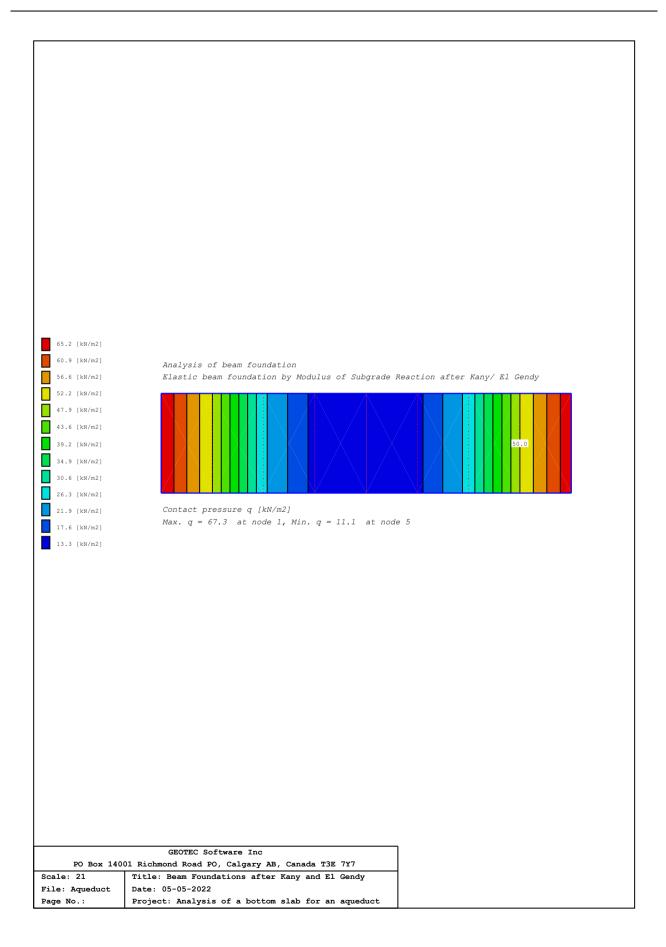
Distributed Loads:

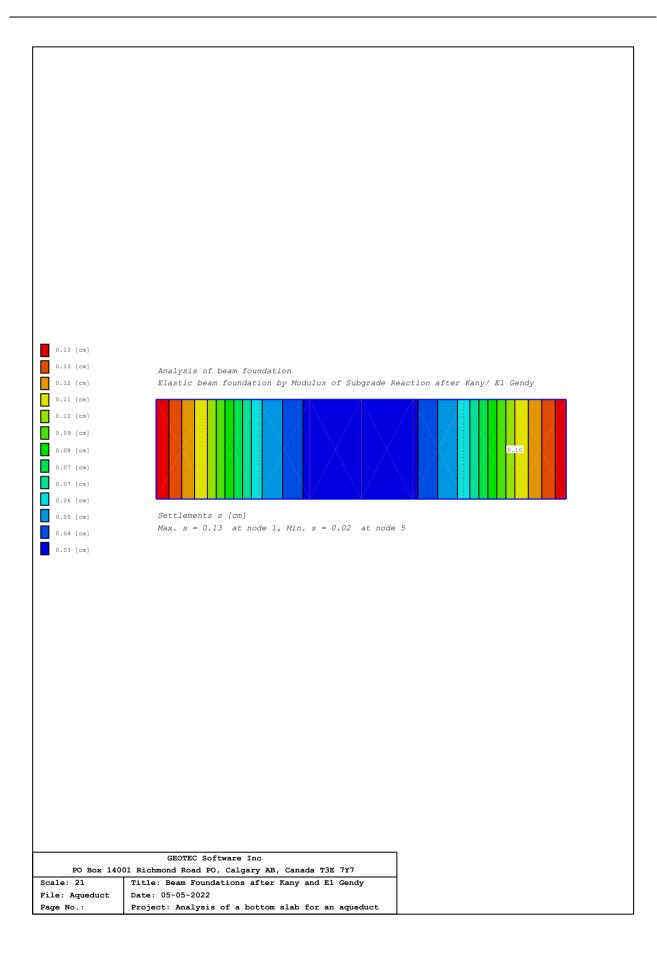
No.	Load	Load start from	Load end from	Load type
	value	the left edge	the left edge	
I	Pf	Xpl	Xpr	
[—]	[kN/m2]	[m]	[m]	[-]
1	21.582	0.00	4.20	
2	5.000	0.00	4.20	(Self weight)

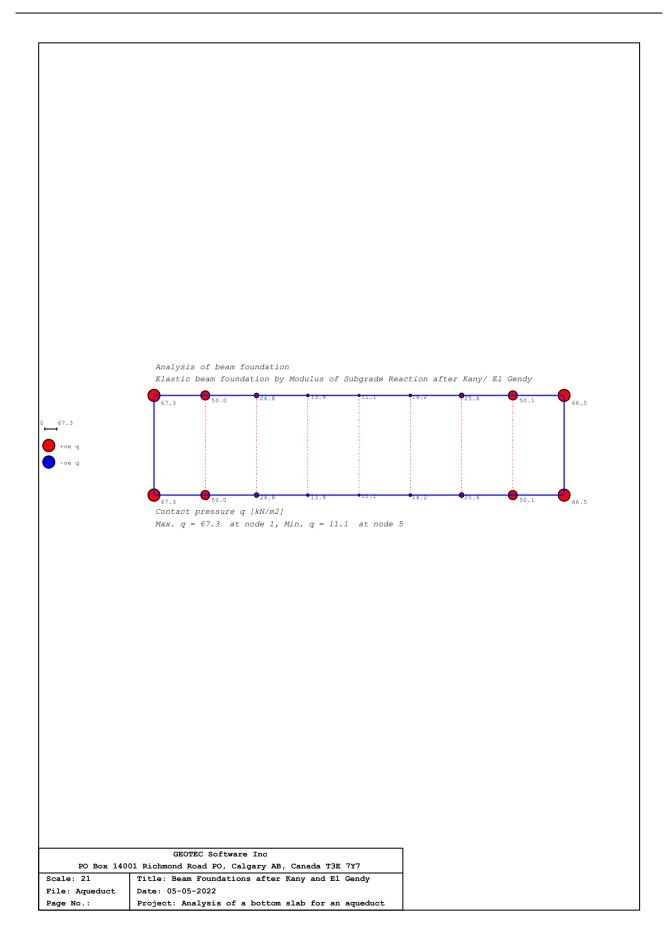
Right sides of the system of equations:

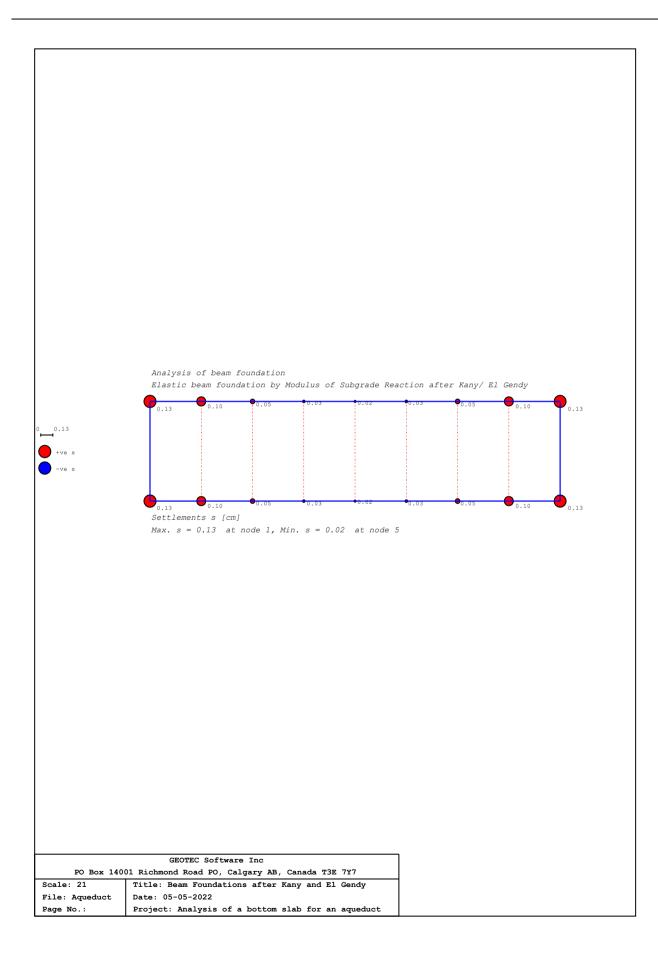

5	
Element No. I [-]	Right sides of the system of equations Rv [m]
1	2.8275E+02
2	1.3464E+02
3	7.8916E-04
4	1.1705E-03
5	1.7496E-03
6	2.4803E-03
7	3.3623E-03
8	4.3959E-03

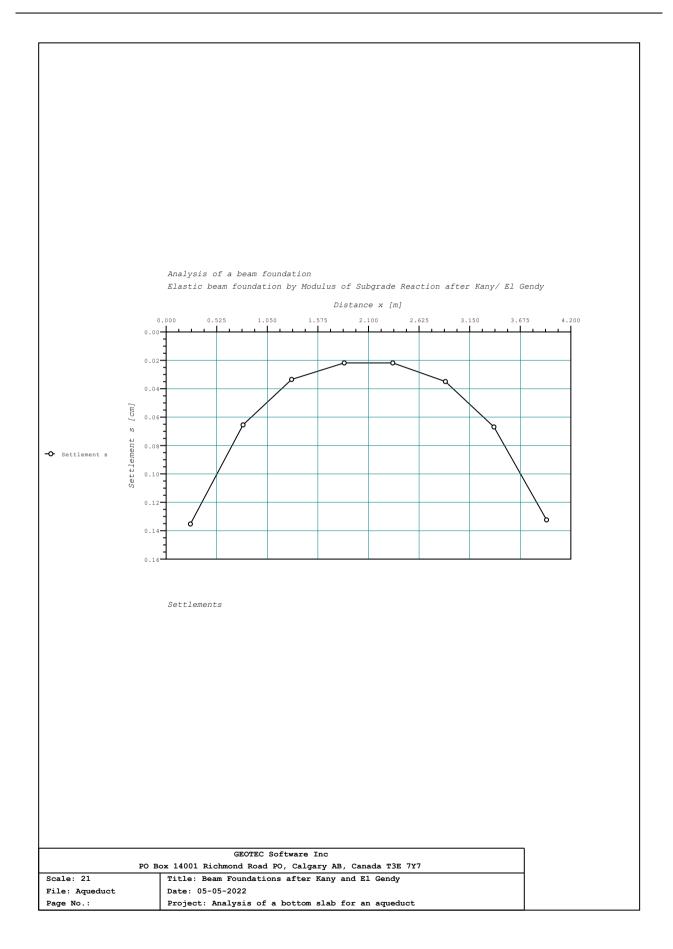

Settlements/ Contact pressures/ Moduli of subgrade reactions:

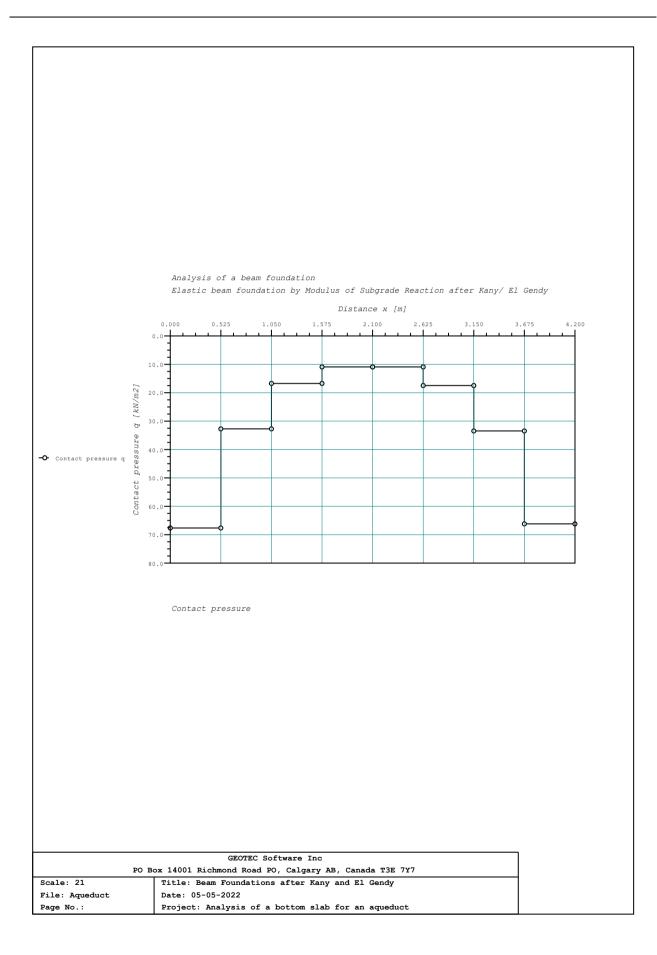

Element No.	Contact pressure	Settlement	Modulus of subgrade reaction
I	q	S	ks
[-]	[kN/m2]	[cm]	[kN/m3]
1	67.3	0.13	50000
2	32.7	0.07	50000
3	16.9	0.03	50000
4	11.0	0.02	50000
5	11.1	0.02	50000
6	17.3	0.03	50000
7	33.6	0.07	50000
8	66.5	0.13	50000

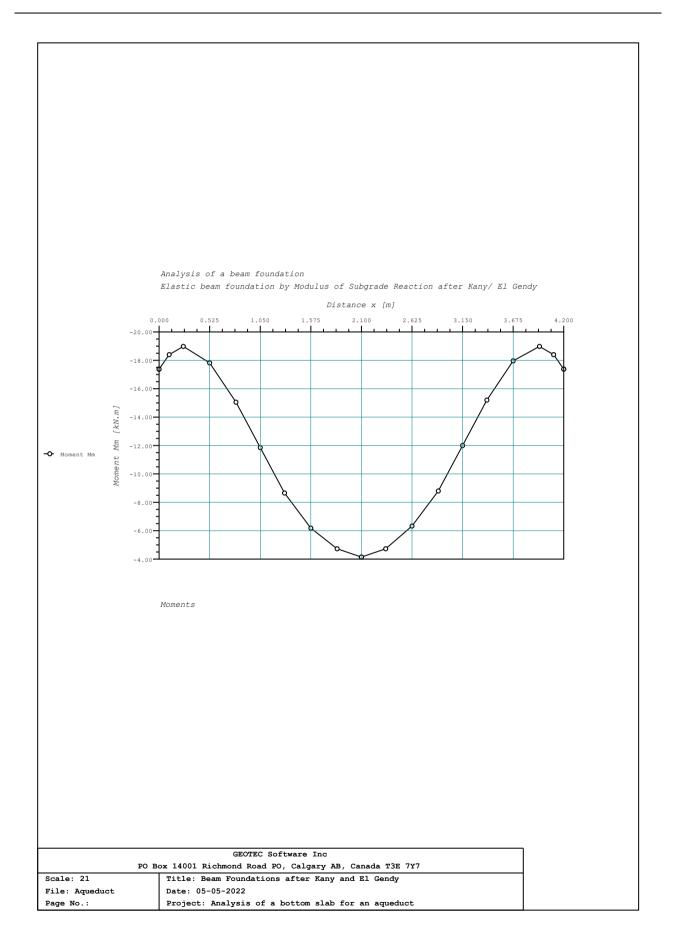

Moments/ Shear Forces:

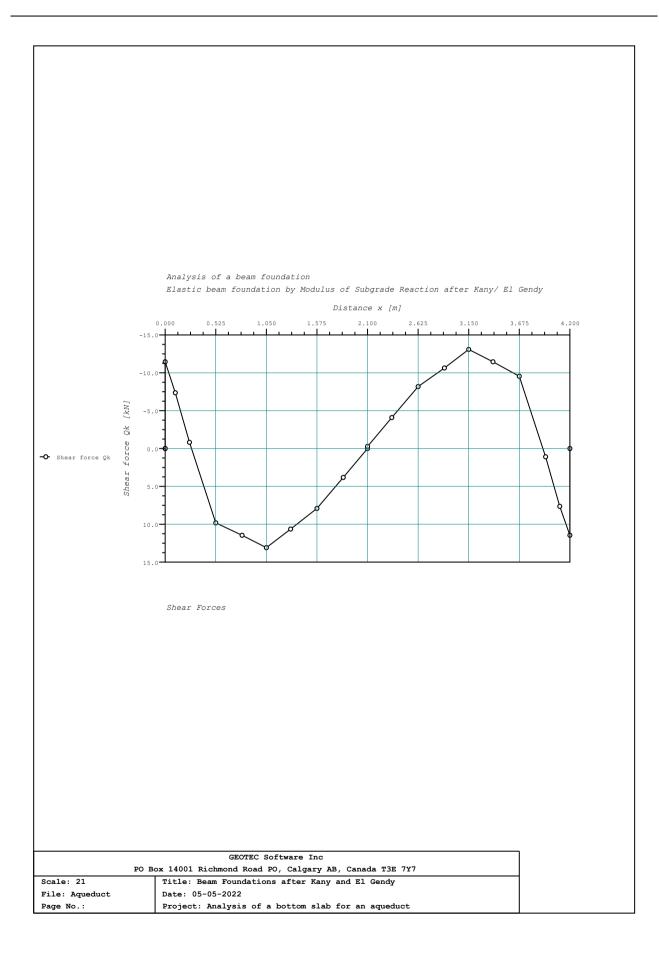

No. I	Distance x	Distance	Moment Mm	Shear force Qk
[—]	[m]	[-]	[kN.m]	[kN/m]
1	-0.10	CL	-17.07	-6.7
2	0.00	CC	-17.41	0.0
3	0.00	CC	-17.42	-11.5
4	0.10	CR	-18.36	-7.4
5	0.26		-19.02	-0.8
6	0.52		-17.83	9.9
7	0.79		-15.02	11.5
8	1.05		-11.79	13.1
9	1.31		-8.68	10.6
10	1.57		-6.23	8.0
11	1.84		-4.66	3.9
12	2.09	MM	-4.17	0.0
13	2.10		-4.17	-0.1
14	2.36		-4.74	-4.2
15	2.63		-6.37	-8.3
16	2.89		-8.86	-10.7
17	3.15		-12.00	-13.2
18	3.41		-15.21	-11.3
19	3.67		-17.94	-9.5
20	3.94		-19.05	1.0
21	4.10	CL	-18.36	7.5
22	4.20	CC	-17.41	11.5
23	4.20	CC	-17.41	0.0
24	4.30	CR	-17.41	0.0











10.5 Example 3: Analysis of a raft for two equal walls

10.5.1 Description of the problem

Figure 10.13 shows plan and section of a raft with dimensions and loads. The raft carries loads from two equal walls, each 800 [kN/m]. It is required to find the contact pressure distribution, settlements, moment and shear force diagrams for the raft. The loading and the raft are symmetrical.

Geometry:			
Thickness of the raft	d	=0.5	L J
Dimensions of the raft	A_{f}	=8×10	$[m^2]$
Groundwater depth under the ground surface	Tw	=1.75	[m]
Foundation depth under the ground surface	Tf	=2	[m]

Material properties of the concrete and unit weight of the water

Modulus of elasticity of the concrete	$E_b = 2 \times 10^7$	$[kN/m^2]$
Unit weight of the concrete	$\gamma_b=25$	$[kN/m^3]$
Unit weight of the water	$\gamma_w = 10$	$[kN/m^3]$

Soil properties

Modulus of subgrade reaction of the soil $k_s = 25000 \text{ [kN/m}^3\text{]}.$

10.5.2 Preparing the calculation

The raft can be regarded as a beam on elastic foundation subjected to:

- A uniformly distributed loading p_f equal to the weight of the raft itself minus the uplift pressure from the ground water.
- Two concentrated forces from two walls $P_1 = P_2 = 800$ [kN/m].

Computing the uniform load on the raft

Own weight of the raft	$w_o = \gamma_b \times d = 25 \times 0.5$	=12.5	$[kN/m^2]$
Up lift pressure	$w_w = \gamma_w \times (T_f - T_w) = 10(2$	-1.75)=-2.5	$[kN/m^2]$
Total	$p_f =$	=10	$[kN/m^2]$

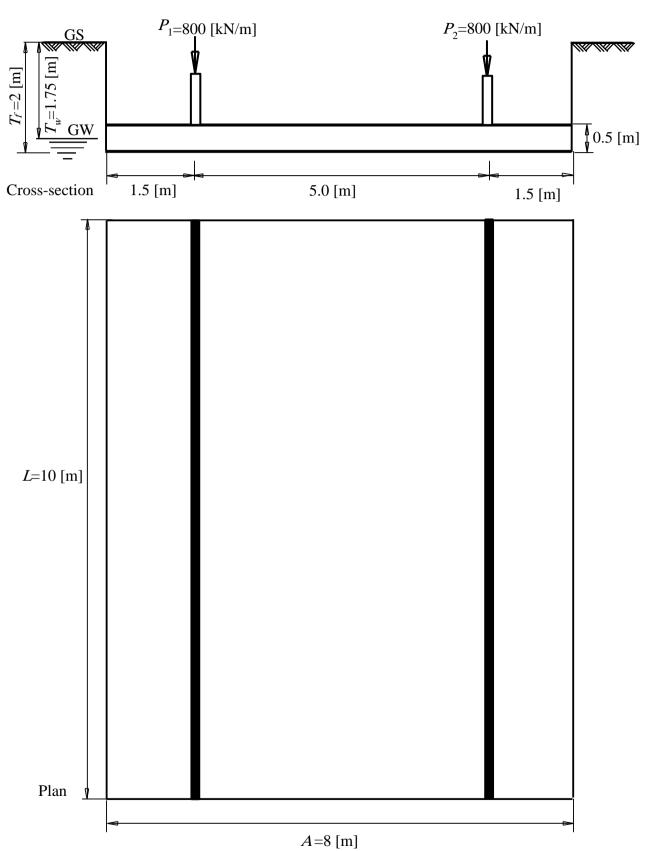


Figure 10.13 Raft with dimensions and loads from two equal walls

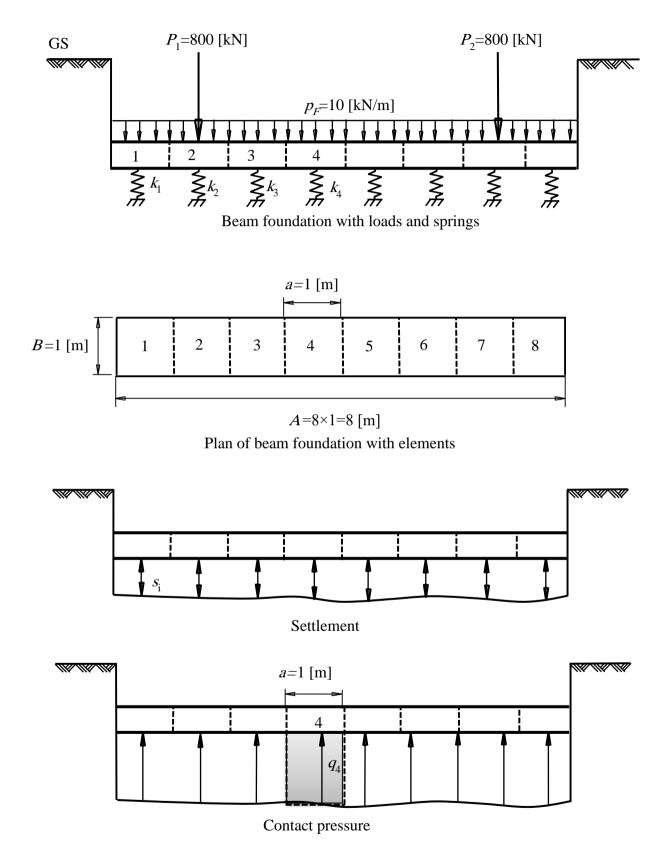


Figure 10.14 One meter strip width of the raft

10.5.3 Hand calculation

Assume one-meter strip width from the raft and consider it as a beam on elastic foundation. The beam is divided into eight equal elements, each 1 [m] long (Figure 10.14). Because of the symmetry of the system, the analysis can be carried out by considering only half of the beam. Hence, the total number of equations is reduced to four.

According to *Kany/ El Gendy* (1995), the analysis of a beam on elastic foundation is carried out in the following steps:

10.5.3.1 Moment of inertia I and beam stiffness a:

$$I = \frac{Bd^3}{12} = \frac{1 \times 0.5^3}{12} = 0.0104 \ [m^4]$$

$$\alpha = \frac{a \times B}{E_b I} = \frac{1^4 \times 1}{2000000 \times 0.0104} = 4.81 \times 10^{-6} \,[\text{m}^3/\text{kN}]$$

10.5.3.2 Determining external moments $M_i^{(l)}$

The external moments $M_i^{(l)}$ at points 2, 3, 4 and 5 are:

$$M_1^{(l)} = zero$$

$$M_2^{(l)} = 10 \times \frac{(1.5 \times 1)^2}{2} = 11.25 \text{ [kN.m]}$$

$$M_3^{(l)} = 10 \times \frac{(1.5 \times 1)^2}{2} + 800 \times 1 = 831.25 \text{ [kN.m]}$$

$$M_4^{(l)} = 10 \times \frac{(1.5 \times 1)^2}{2} + 800 \times 2 \times 1 = 1661.25 \text{ [kN.m]}$$

$$M_5^{(l)} = 10 \times \frac{(1.5 \times 1)^2}{2} + 800 \times 3 = 2501.25 \text{ [kN.m]}$$

10.5.3.3 Determining the right hand side R_i

The right hand side R_i of the contact pressure equation is:

$$R_{i} = \left(u_{i}M_{i-1}^{(l)} + v_{i}M_{i}^{(l)} + w_{i}M_{i+1}^{(l)}\right)\frac{a^{2}}{6EI_{i}}$$

$$R_{i} = \left(1 \times M_{i-1}^{(l)} + 4 \times M_{i}^{(l)} + 1 \times M_{i+1}^{(l)}\right)\frac{1^{2}}{6 \times 20000000 \times 0.0104}$$

$$R_{i} = 8.01 \times 10^{-7} \left(M_{i-1}^{(l)} + 4M_{i}^{(l)} + M_{i+1}^{(l)}\right)$$

-10.50-

Apply the above equation at points 2, 3 and 4:

$$R_{2} = 8.01 \times 10^{-7} (0 + 4 \times 11.25 + 831.25) = 7.02 \times 10^{-4}$$
$$R_{3} = 8.01 \times 10^{-7} (11.25 + 4 \times 831.25 + 1661.25) = 4 \times 10^{-3}$$
$$R_{4} = 8.01 \times 10^{-7} (831.25 + 4 \times 1661.25 + 2501.25) = 8 \times 10^{-3}$$

10.5.3.4 Determining contact pressures

The contact pressure equation is:

$$\begin{aligned} \left(\frac{1}{k}\right)q_{i+1} - \left(\frac{2}{k} - \frac{\alpha}{6}\right)q_i + \left(\frac{1}{k} + \alpha\right)q_{i-1} + \alpha\left(\sum_{j=1}^{i-2}(i-j)q_j\right) &= R_i \\ \left(\frac{1}{25000}\right)q_{i+1} - \left(\frac{2}{25000} - \frac{4.81 \times 10^{-6}}{6}\right)q_i + \left(\frac{1}{25000} + 4.81 \times 10^{-6}\right)q_{i-1} \\ &+ 4.81 \times 10^{-6}\left(\sum_{j=1}^{i-2}(i-j)q_j\right) = R_i \end{aligned}$$

or

$$q_{i+1} - 1.98 q_i + 1.12 q_{i-1} + 0.12 \left(\sum_{j=1}^{i-2} (i-j) q_j \right) = 25000 R_i$$

Apply the above equation at points 2, 3 and 4:

$$q_3 - 1.98 q_2 + 1.12 q_1 = 17.55$$

 $q_4 - 1.98 q_3 + 1.12 q_2 + 0.24 q_1 = 100$
 $-0.98 q_4 + 1.12 q_3 + 0.36 q_1 + 0.24 q_2 = 200$

There are four unknown q_1 , q_2 , q_3 , and q_4 , so a farther equation is required. This can be obtained by considering the overall equilibrium of vertical forces.

$$\sum V = 0$$

a × B(q₁ + q₂ + q₃ + q₄ + q₅ + q₆ + q₇ + q₈) = P₁ + P₂ + A × B × P_f

 $q_1 + q_2 + q_3 + q_4 = 840$

or

-10.51-

Contact pressure equations in matrix form:

$$\begin{bmatrix} 1.12 & -1.98 & 1 & 0\\ 0.24 & 1.12 & -1.98 & 1\\ 0.36 & 0.24 & 1.12 & -0.98\\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} q_1\\ q_2\\ q_3\\ q_4 \end{bmatrix} = \begin{bmatrix} 17.55\\ 100\\ 200\\ 840 \end{bmatrix}$$

Solving the above system of linear equations to obtain the contact pressures q_1 , q_2 , q_3 , and q_4 .

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} 249.98 \\ 230.44 \\ 193.85 \\ 165.72 \end{bmatrix} [kN/m^2]$$

10.5.3.5 Determining settlements s_i

The settlement s_i can be given by:

$$s_{i} = \frac{q_{i}}{k_{i}} = \frac{q_{i}}{25000} \text{ [m]}$$

$$s_{1} = 1.00 \text{ [cm]}$$

$$s_{2} = 0.92 \text{ [cm]}$$

$$s_{3} = 0.78 \text{ [cm]}$$

$$s_{4} = 0.66 \text{ [cm]}$$

The contact pressure distribution, settlement, moment and shear force diagrams for the raft are shown in Figure 10.15 to Figure 10.18. Once the internal forces are obtained at various sections, the design of the raft can be completed in the normal manner.

10.5.3.6 Computer calculation

The input data and results of *GEO Tools* are presented on the pages 10.55 to 10.66. By comparison, one can see an agreement with the hand calculation.

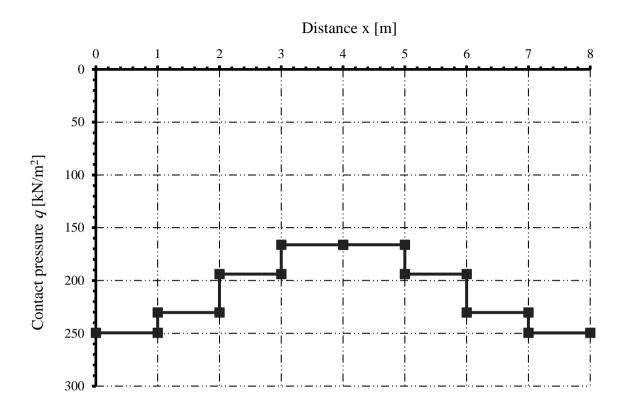


Figure 10.15 Contact pressures

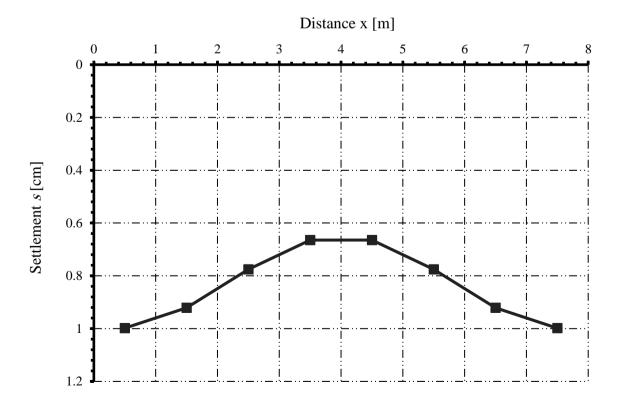


Figure 10.16 Settlements

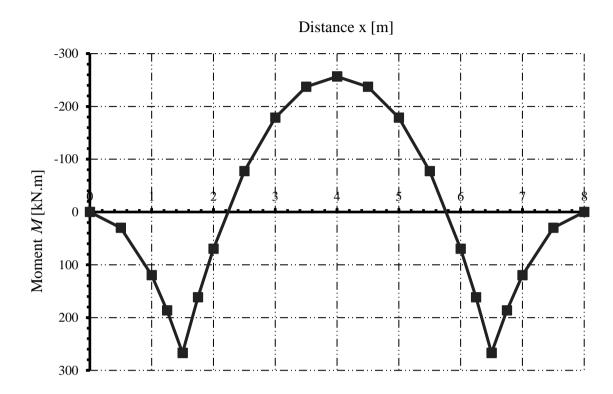


Figure 10.17 Moments

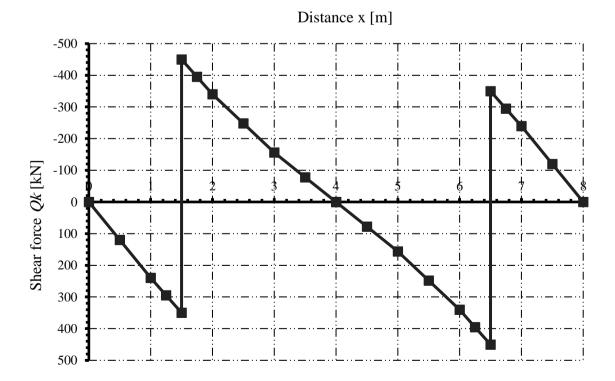
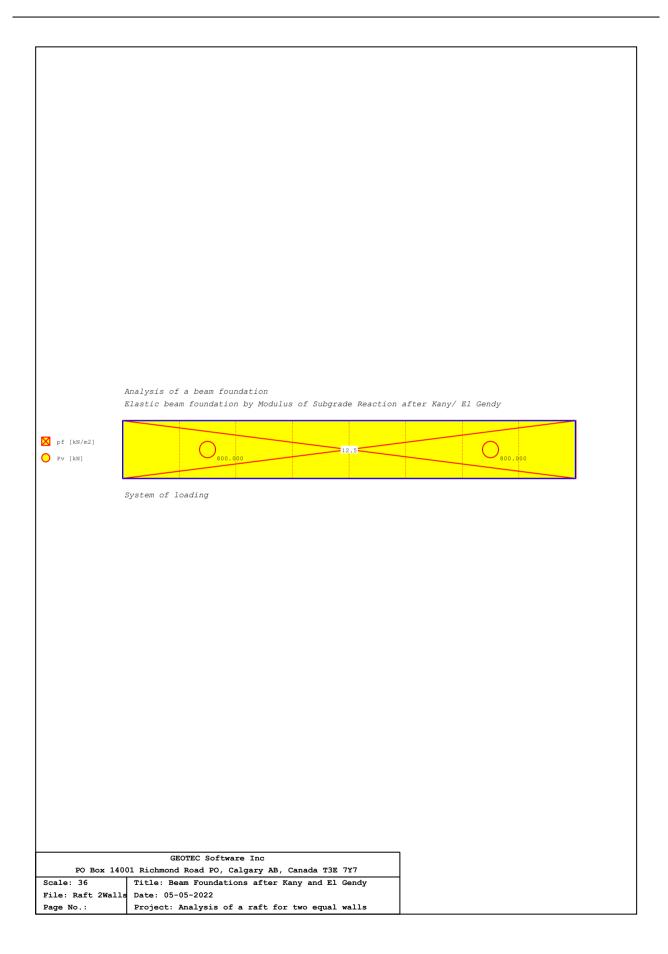


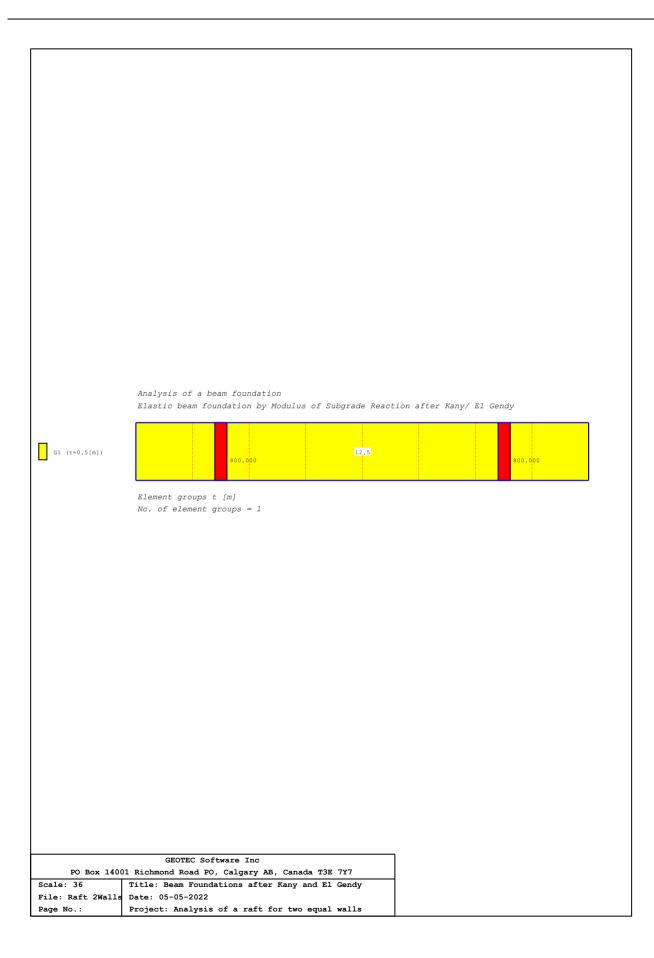
Figure 10.18 Shear forces

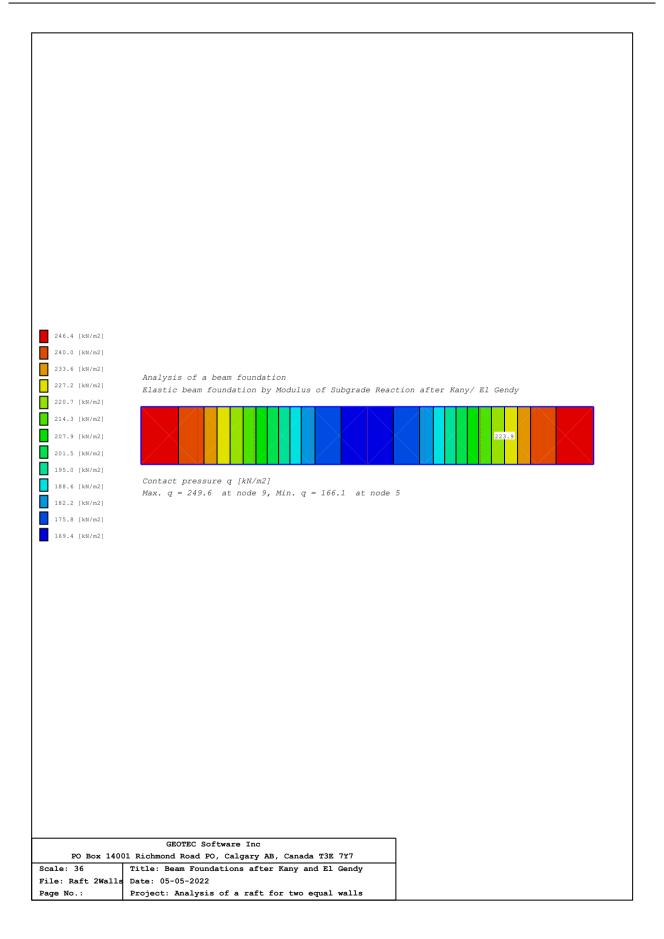
-10.54-

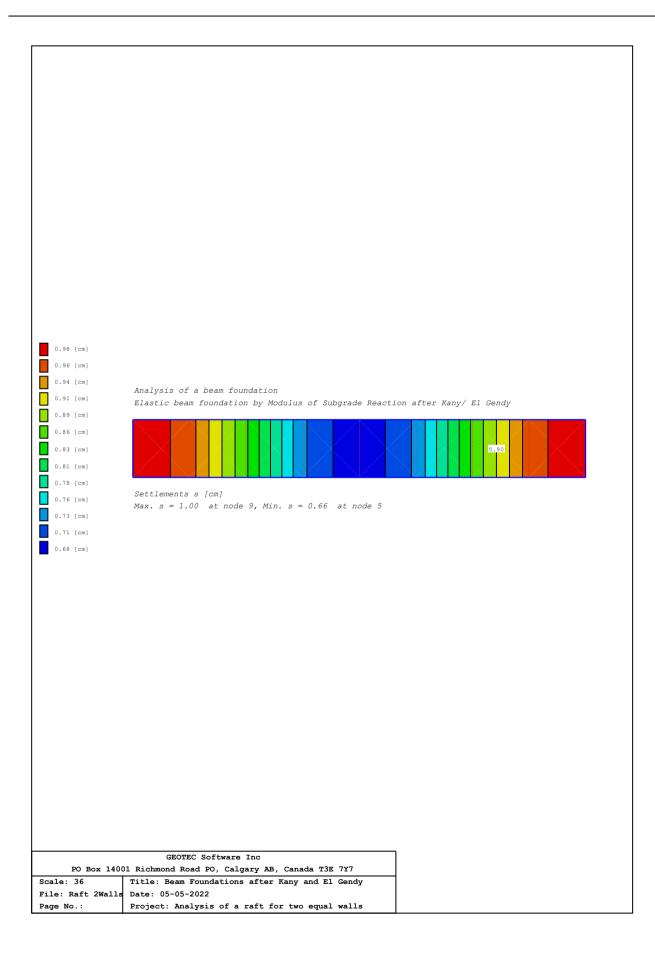
Program ***************** Title: Beam Found Date: 05-05-2022 Project: Analysis File: Raft 2Walls	GEO Tool. Version authors M. El ************************************	s 12.3 Gendy/ A. H *********** ny and El (two equal w	Cl Gend State Gendy Walls	प्र ******	***			
						Rea	action after Kany/ El Ger	ıdy
Data:								
Main Soil Data:								
Groundwater depth Foundation depth			Tw Tf		[m] [m]	= 1 = 2		
Summary of loadin	g:							
Self weight Load on Footing Groundwater force Total load			Pe Pa Pw Po=P	e+Pa-Pw	[kN] [kN] [kN] [kN]	= 1 = 2	.00.000 .580.000 20.000 .680.000	
Groundwater press Average soil pres			Qw Qo		[kN/m2] [kN/m2]			
Beam Material:								
Modulus of elasti Unit weight of fo	-	crete	Eb Yb		[kN/m2] [kN/m3]		2000000.00 25.0	
Dimensions:								
Depth of the foun Beam thickness Moment of inertia Beam stiffness Beam length (long Beam width (trans Length/width rati Element size Number of element	of the beam itudinal) versal) o	under grour	nd Tk d I αB A/B a N		[m] [m4] 1/[kN/m3] [m] [m] [-]	= 0 = 4	0.50 0.0104 1.80E-06 3.00 .00 3.00 00	
Loads:								
Point Loads:								
No. Load L value		Column	Column	Colu	ımn			
I P [-] [kN]	Хр [m]	a [m]	[m]		[-]			
1 800.000 2 800.000	1.50	0.20 0.20	1.00		Wl			
Distributed Loads								
	oad start from the left edge Xpl [m]	Load end	from		-			
1 -2.500 2 12.500			8.00		 vater pres	sure	2)	

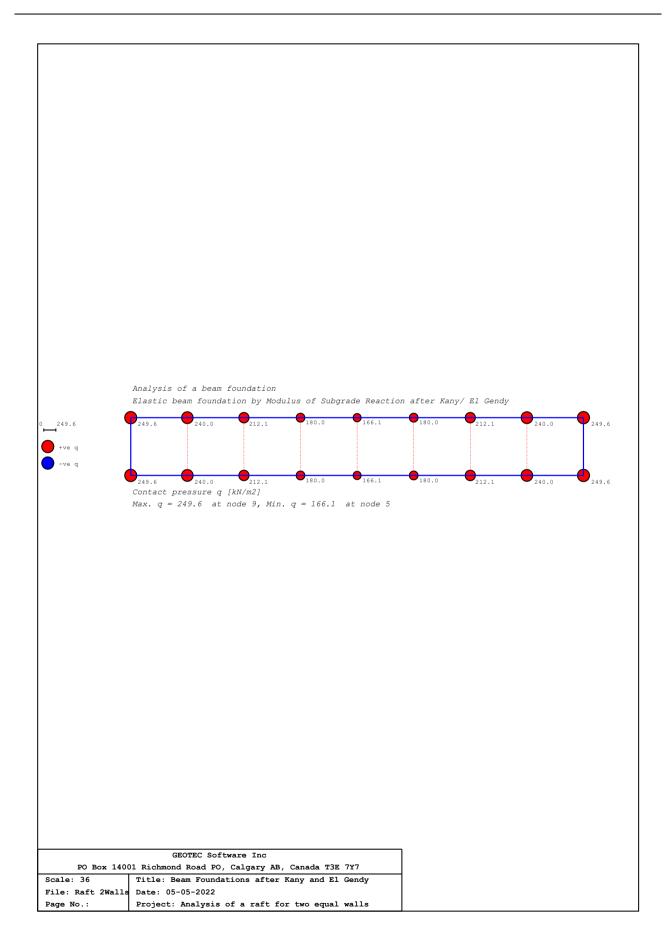
Right sides of the system of equations:

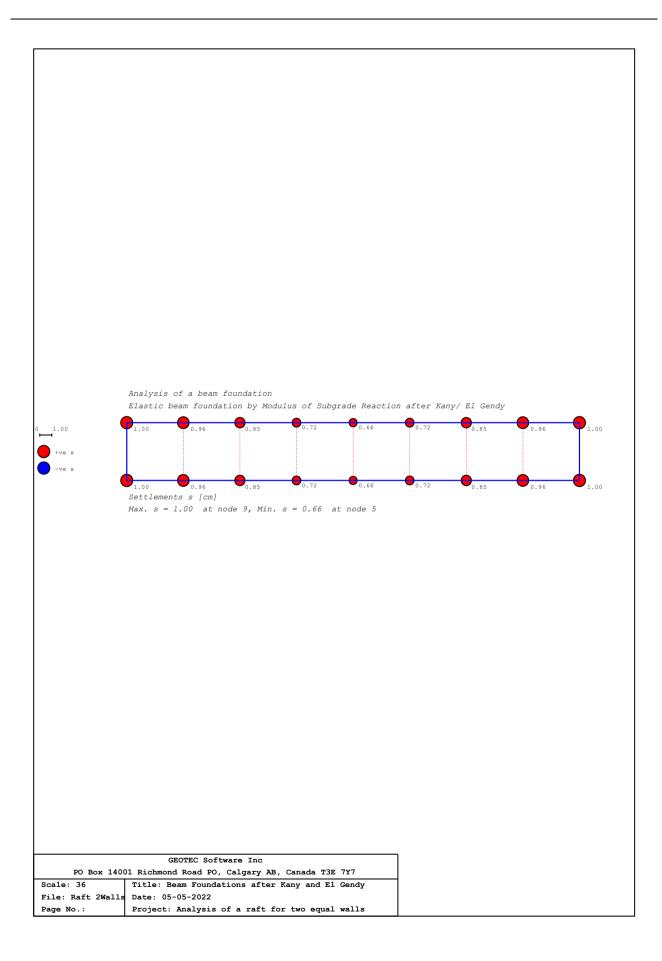

Element	Right sides of the
No.	system of equations
I	Rv
[-]	[m]
1	6.72E+03
2	1.68E+03
3	7.01E-04
4	3.998E-03
5	7.982E-03
6	1.2014E-02
7	1.6094E-02
8	2.0862E-02

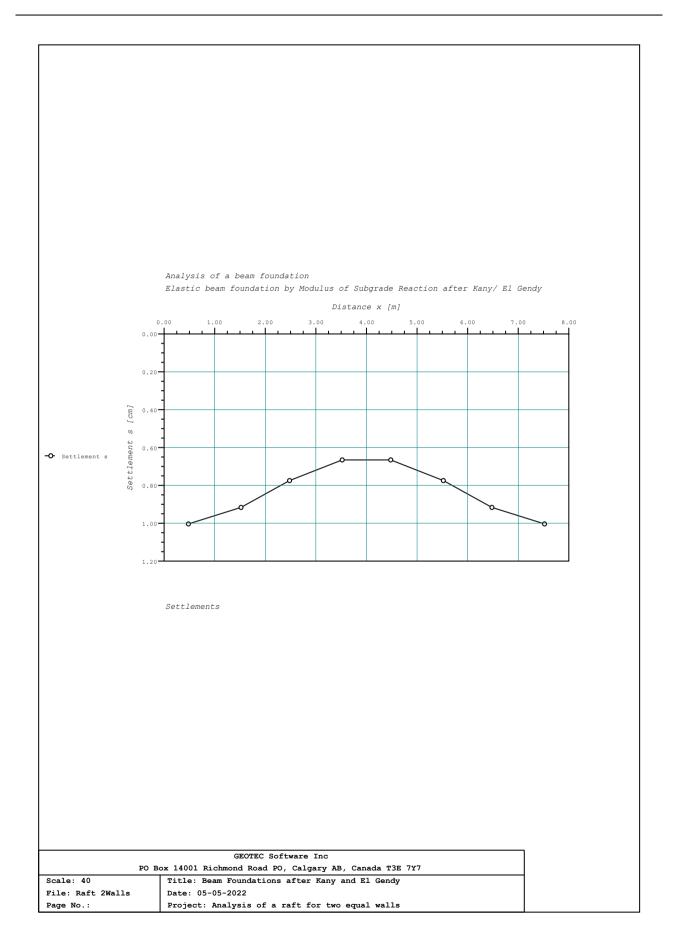

Settlements/ Contact pressures/ Moduli of subgrade reactions:

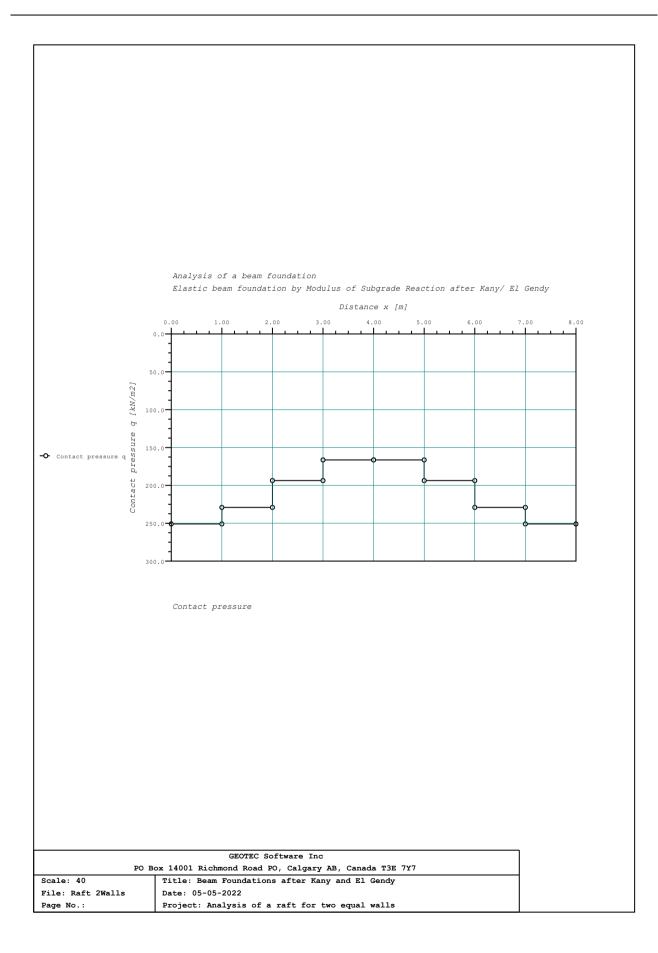

Element	Contact	Settlement	Modulus of
No.	pressure		subgrade
	F		reaction
т	q	s	ks
-	-	-	
[-]	[kN/m2]	[cm]	[kN/m3]
1	249.6	1.00	25000
1			
2	230.3	0.92	25000
3	194.0	0.78	25000
4	166.1	0.66	25000
5	166.1	0.66	25000
6	193.9	0.78	25000
7	230.3	0.92	25000
8	249.6	1.00	25000

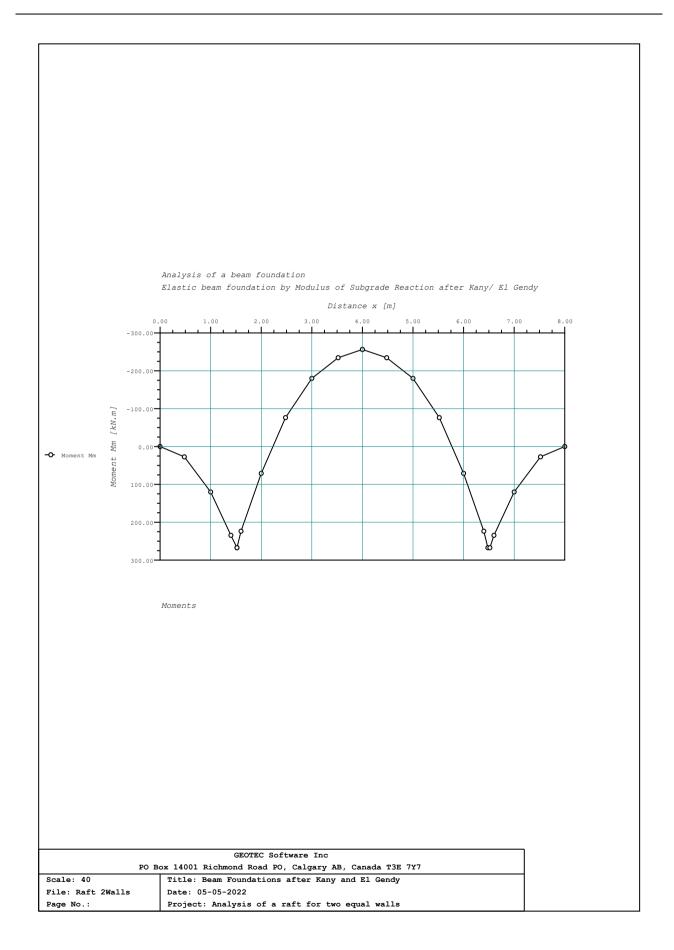

Moments/ Shear Forces:

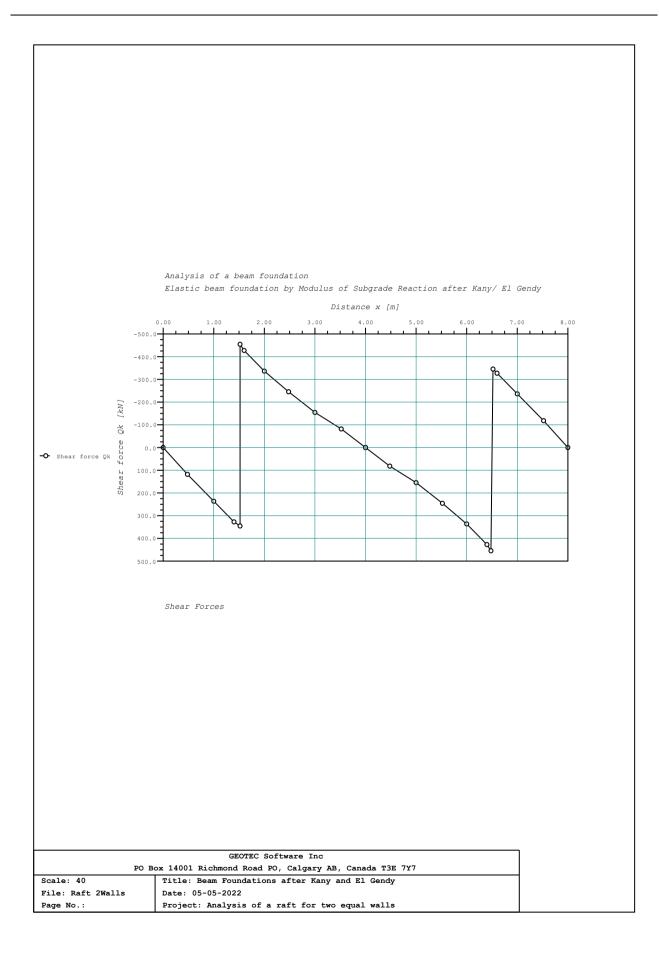

		·		
No.	Distance	Distance	Moment	Shear force
I	X		Mm	Qk
[-]	[m]	[-]	[kN.m]	[kN/m]
1	0.00		0.00	0.0
2	0.50		29.95	119.8
3	1.00		119.81	239.6
4	1.40	CL	233.28	327.7
5	1.50	CC	267.15	349.8
6	1.50	CC	266.70	-450.0
7	1.60	CR	223.23	-428.2
8	2.00		69.57	-340.1
9	2.50		-77.47	-248.1
10	3.00		-178.53	-156.1
11	3.50		-237.08	-78.1
12	4.00	MM	-256.60	0.0
13	4.00		-256.60	0.0
14	4.50		-237.08	78.1
15	5.00		-178.53	156.1
16	5.50		-77.47	248.1
17	6.00		69.58	340.1
18	6.40	CL	223.24	428.2
19	6.50	CC	267.16	450.2
20	6.50	CC	266.81	-349.6
21	6.60	CR	233.29	-327.7
22	7.00		119.81	-239.6
23	7.50		29.95	-119.8
24	8.00		0.00	0.0











10.6 Example 4: Analysis of a raft for three equal walls

10.6.1 Description of the problem

Figure 10.19 shows plan and section with dimensions and loads for a raft of three equal walls. It is required to find the contact pressure distribution, settlements, moment and shear force diagrams for the raft. The loading and the raft are symmetrical.

Geometry:			
Thickness of the raft	d	=0.6	[m]
Dimensions of the raft	A_{f}	=10×12	$[m^2]$
Groundwater depth under the ground surface	Tw	=1	[m]
Foundation depth under the ground surface	Tf	=2	[m]

Material properties of the concrete a	nd unit weight of	f the water
Modulus of elasticity of the concrete	$E_b = 2 \times 10^7$	$[kN/m^2]$
Unit weight of the concrete	$\gamma_b=25$	$[kN/m^3]$

Soil properties

Unit weight of the water

Modulus of subgrade reaction of the soil $k_s = 40000 \text{ [kN/m^3]}.$

10.6.2 Preparing the calculation

The raft can be regarded as a beam on elastic foundation subjected to:

• A uniformly distributed loading p_f equal to the weight of the raft itself minus the uplift pressure from the ground water.

 $[kN/m^3]$

 $\gamma_w = 10$

• Three concentrated forces from three walls $P_1 = P_2 = P_3 = 1000$ [kN/m].

Computing the uniform load on the raft

Own weight of the raft	$w_o = \gamma_b \times d = 25 \times 0.6$	=15	$[kN/m^2]$
Up lift pressure	$w_w = \gamma_w \times (T_f - T_w) = 10(2 - 1)$	=-10	$[kN/m^2]$
Total	$p_f =$	=5	$[kN/m^2]$

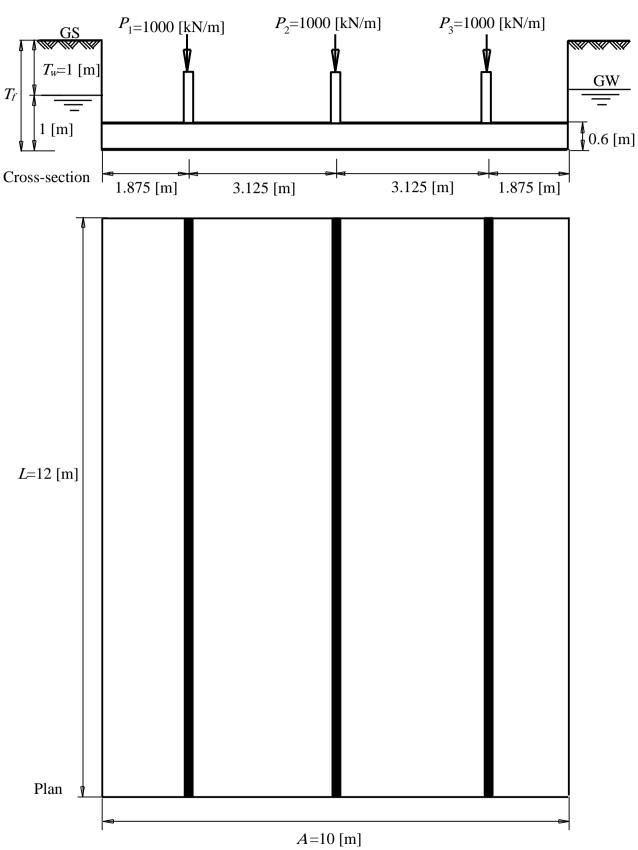


Figure 10.19 Raft of three equal walls

10.6.3 Hand calculation

Assume one-meter strip width from the raft and consider it as a beam on elastic foundation. The beam is divided into eight equal elements, each 1.25 [m] long (Figure 10.20). Because of the symmetry of the system, the analysis can be carried out by considering only half of the beam. Hence, the total number of equations is reduced to four.

According to *Kany/ El Gendy* (1995), the analysis of a beam on elastic foundation is carried out in the following steps:

10.6.3.1 Moment of inertia I and beam stiffness a:

$$I = \frac{Bd^3}{12} = \frac{1 \times 0.6^3}{12} = 0.018 [\text{m}^4]$$

and

$$\alpha = \frac{a^4 B}{E_b I} = \frac{1.25^4 \times 1}{(2 \times 10^7)(0.018)} = 6.782 \times 10^{-6} \, [\text{m}^3/\text{kN}]$$

10.6.3.2 Determining external moments $M_i^{(l)}$

The external moments $M_i^{(l)}$ at points 2, 3, 4 and 5 are:

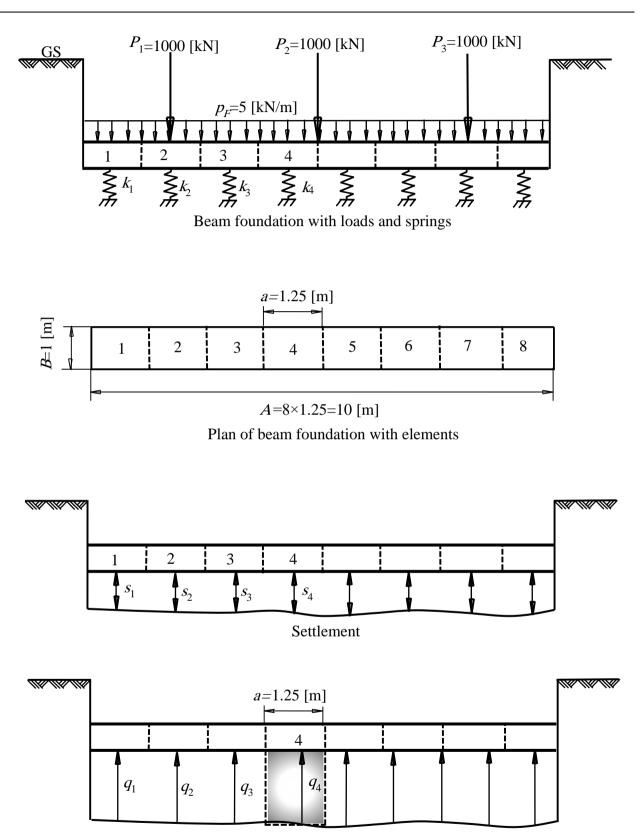
$$M_{1}^{(l)} = 0$$

$$M_{2}^{(l)} = 5 \frac{(1.25 \times 1.5)^{2}}{2} = 8.789 \text{ [kN.m]}$$

$$M_{3}^{(l)} = 5 \frac{(1.25 \times 2.5)^{2}}{2} + 1000 \times 1.25 \times 1 = 1274.414 \text{ [kN.m]}$$

$$M_{4}^{(l)} = 5 \frac{(1.25 \times 3.5)^{2}}{2} + 1000 \times 1.25 \times 2 = 2547.852 \text{ [kN.m]}$$

$$M_{5}^{(l)} = 5 \frac{(1.25 \times 4.5)^{2}}{2} + 1000 \times 1.25 \times 3 + 1000 \times 1.25 \times 0.5 = 4454.102 \text{ [kN.m]}$$


10.6.3.3 Determining the right hand side R_i

The right hand side R_i of the contact pressure equation is:

$$R_{i} = \left(u_{i} M^{(l)}{}_{i-1} + v_{i} M^{(l)}{}_{i} + w_{i} M^{(l)}{}_{i+1}\right) \frac{a^{2}}{6E I_{i}}$$

$$R_{i} = \left(M^{(l)}{}_{i-1} + 4 M^{(l)}{}_{i} + M^{(l)}{}_{i+1}\right) \frac{1.25^{2}}{6 \times 2 \times 10^{7} \times 0.018}$$

$$R_{i} = \frac{1.5625}{2160000} \left(M^{(l)}{}_{i-1} + 4 M^{(l)}{}_{i} + M^{(l)}{}_{i+1}\right)$$

Contact pressure

Figure 10.20 One meter strip width of the raft

Apply the above equation at points 2, 3 and 4:

$$R_{2} = \frac{1.5625}{2160000} (0 + 4 \times 8.789 + 1274.414) = \frac{2046.203}{216000}$$

$$R_{3} = \frac{1.5625}{2160000} (8.789 + 4 \times 1274.414 + 2547.852) = \frac{11959.839}{216000}$$

$$R_{4} = \frac{1.5625}{2160000} (1274.414 + 4 \times 2547.852 + 4454.102) = \frac{24874.881}{216000}$$

10.6.3.4 Determining contact pressures

The contact pressure equation is:

$$\left(\frac{1}{k}\right)q_{i+1} - \left(\frac{2}{k} - \frac{\alpha}{6}\right)q_i + \left(\frac{1}{k} + \alpha\right)q_{i-1} + \alpha\left(\sum_{j=1}^{i-2}(i-j)q_j\right) = R_i$$

$$\left(\frac{1}{40000}\right)q_{i+1} - \left(\frac{2}{40000} - \frac{6.782 \times 10^{-6}}{6}\right)q_i + \left(\frac{1}{40000} + 6.782 \times 10^{-6}\right)q_{i-1} + 6.782 \times 10^{-6}\left(\sum_{j=1}^{i-2}(i-j)q_j\right) = R_i$$
or

$$\left(\frac{1}{40000}\right)q_{i+1} - 4.887 \times 10^{-5} q_i + 3.178 \times 10^{-5} q_{i-1} + 6.782 \times 10^{-6} \left(\sum_{j=1}^{i-2} (i-j)q_j\right) = R_i$$

or

54
$$q_{i+1}$$
 - 105.559 q_i + 68.645 q_{i-1} + 14.649 $\left(\sum_{j=1}^{i-2} (i-j)q_j\right)$ = 2160000 R_i

Apply the above equation at points 2, 3 and 4:

54
$$q_3$$
-105.559 q_2 +68.645 q_1 =2046.203
54 q_4 -105.559 q_3 +68.645 q_2 +29.298 q_1 =11959.839
54 q_5 -105.559 q_4 -68.645 q_3 +29.298 q_2 +43.947 q_1 =24874.881

Substituting q_5 by q_4

54
$$q_3$$
-105.559 q_2 +68.645 q_1 =2046.203
54 q_4 -105.559 q_3 +68.645 q_2 +29.298 q_1 =11959.839
-51.559 q_4 +68.645 q_3 +29.298 q_2 +43.947 q_1 =24874.881

There are four unknown q_1 , q_2 , q_3 , and q_4 , so a farther equation is required. This can be obtained by considering the overall equilibrium of vertical forces.

$$a \times B(q_1 + q_2 + q_3 + q_4 + q_5 + q_6 + q_7 + q_8) = P_1 + P_2 + P_3 + A \times B \times P_f$$
-10.71-

or

$$q_1 + q_2 + q_3 + q_4 = 1220$$

Contact pressure equations in matrix form:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 68.645 & -105.559 & 54 & 0 \\ 29.298 & 68.645 & -105.559 & 54 \\ 43.947 & 29.298 & 68.645 & -51.559 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} 1220 \\ 2046.203 \\ 2888.75 \\ 5078.75 \end{bmatrix}$$

Solving the above system of linear equations to obtain the contact pressures q_1 , q_2 , q_3 , and q_4 .

$q_1 =$	245.2	$[kN/m^2]$
$q_2 =$	208.0	$[kN/m^2]$
$q_{3}=$	328.2	$[kN/m^2]$
$q_4=$	338.6	$[kN/m^2]$

10.6.3.5 Determining settlements s_i

The settlement s_i can be given by:

$$s_{i} = \frac{q_{i}}{k_{i}} = \frac{q_{i}}{40000} \text{ [m]}$$

$$s_{1} = 0.61 \text{ [cm]}$$

$$s_{2} = 0.77 \text{ [cm]}$$

$$s_{3} = 0.82 \text{ [cm]}$$

$$s_{4} = 0.85 \text{ [cm]}$$

The contact pressure distribution, settlement, moment and shear force diagrams for the raft are shown in Figure 10.21 to Figure 10.24. Once the internal forces are obtained at various sections, the design of the raft can be completed in the normal manner.

10.6.3.6 Computer calculation

The input data and results of *GEO Tools* are presented on the pages 10.75 to 10.86. By comparison, one can see an agreement with the hand calculation.



Figure 10.21 Contact pressures

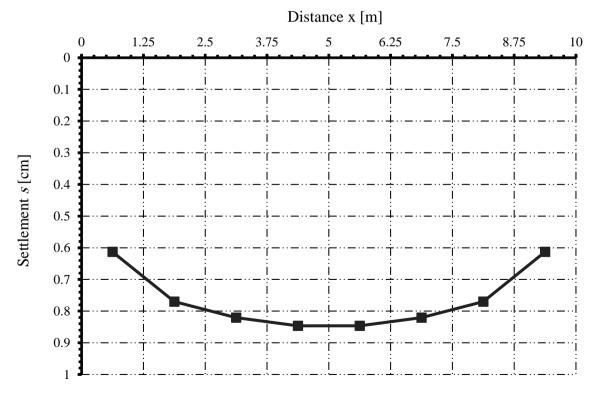


Figure 10.22 Settlements

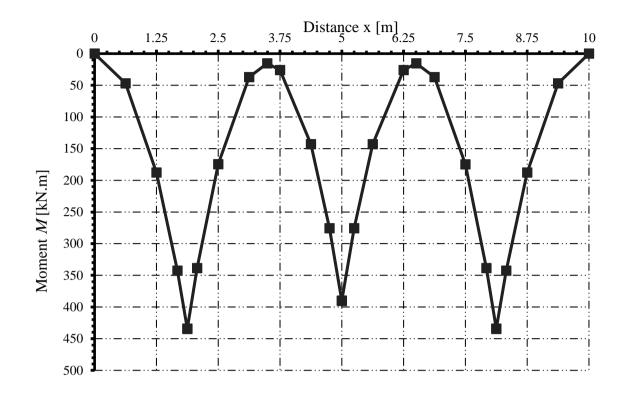


Figure 10.23 Moments

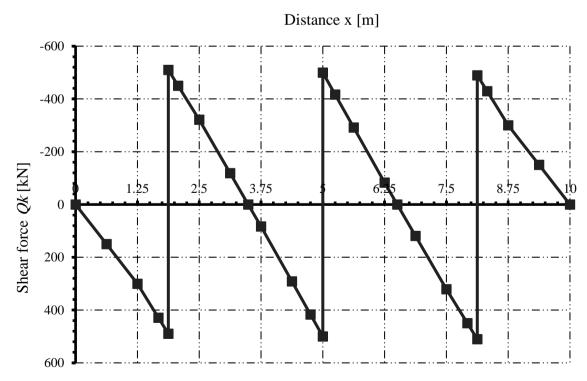
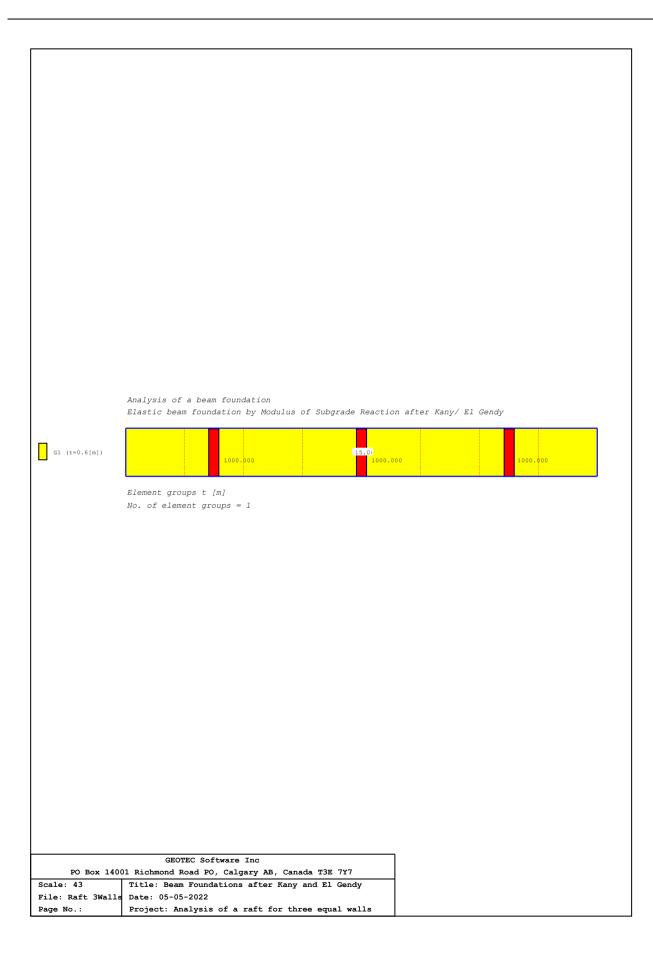


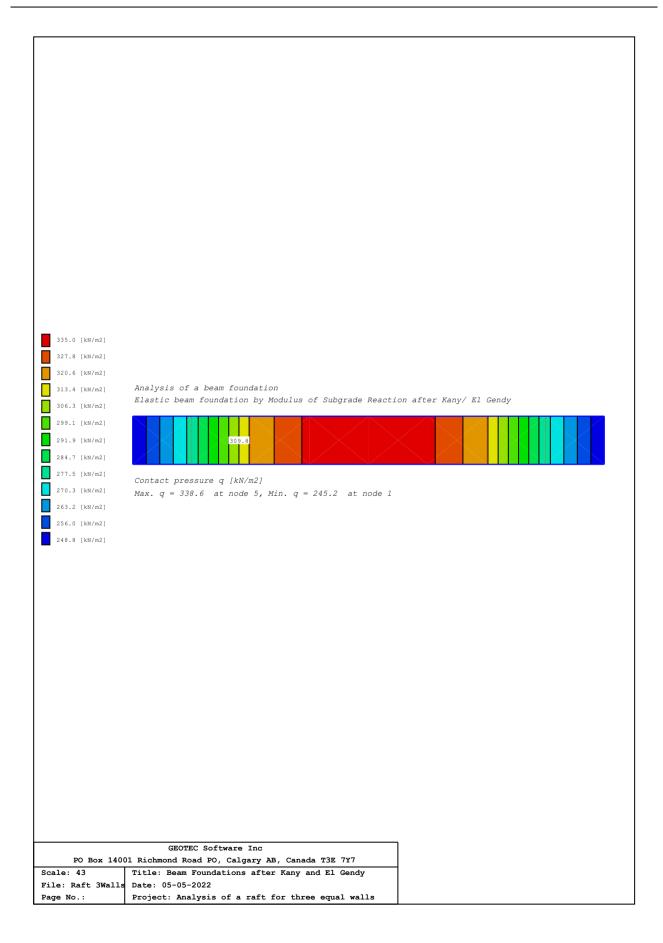
Figure 10.24 Shear forces

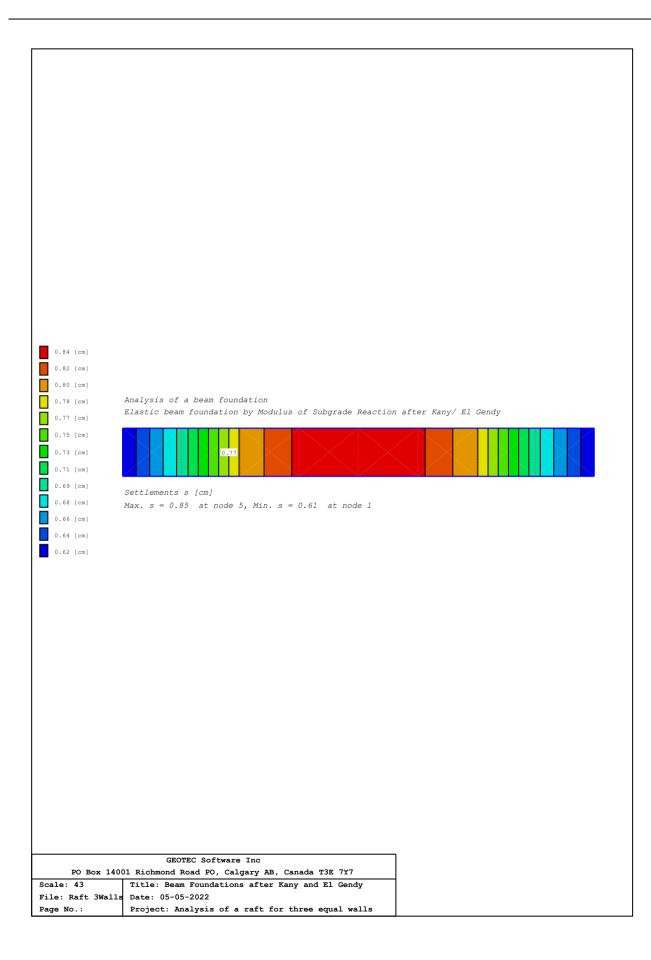
	Prog	GEO Tool Version authors M. El	s 12.3 Gendy/ A.	El Gend	У			
Titl Date Proj	e: Beam Fou : 05-05-202	sis of a raft for	ny and El	Gendy	* * * * * * * *	***		
Anal Calc	ysis of a k ulation met	peam foundation chod: Elastic beam	foundatio	n by Mo	dulus of	5 Subgrade	Re	eaction after Kany/ El Gendy
Data	:							
Main	Soil Data:	:						
	-	oth under the grou th under ground su		Tw Tf		[m] [m]		1.000 2.000
Summ	ary of load	ling:						
Load Grou	weight on Footing ndwater for l load	5		Pe Pa Pw Po=P		[kN] [kN] [kN] [kN]	=	150.000 2900.000 100.000 3050.000
	ndwater pre age soil pi			Qw Qo		[kN/m2] [kN/m2]		10.0 305.0
Beam	Material:							
		sticity of the con footing concrete	crete	Eb Yb		[kN/m2] [kN/m3]		20000000.000 25.0
Dime	nsions:							
Beam Mome Beam Beam Leng Elem	thickness nt of inert stiffness length (lo width (tra th/width ra ent size		under grou	nd Tk d I A B A/B a N		[m] [m4] 1/[kN/m3] [m] [-] [m] [-]	= = = =	10.000 1.000 10.00 1.250
Load	s:							
	t Loads:							
No.	Load value	Load position from the left edge						
I [-]	P [kN]	1010 0090 Xp [m]	a [m]	b [m]		Lb [-]		
2	1000.000 1000.000 1000.000	1.875 5.000 8.125	0.200 0.200 0.200	1.000 1.000 1.000		W1 W2 W3		
Dist	ributed Loa	ads:						
 No.	value	Load start from the left edge		edge	Load ty	 /ре		
I [-]	Pf [kN/m2]	Xpl [m]		Xpr [m]		[-]		
1 2	-10.000 15.000	0.000 0.000			(Groundv (Self we	vater pres eight) 	sur	re)

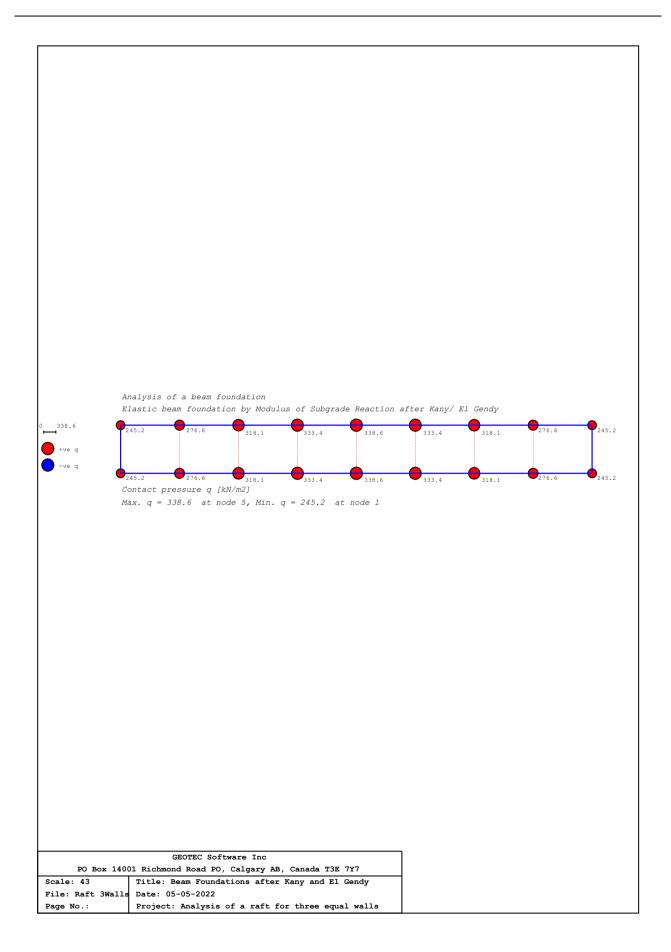
Right sides of the system of equations:

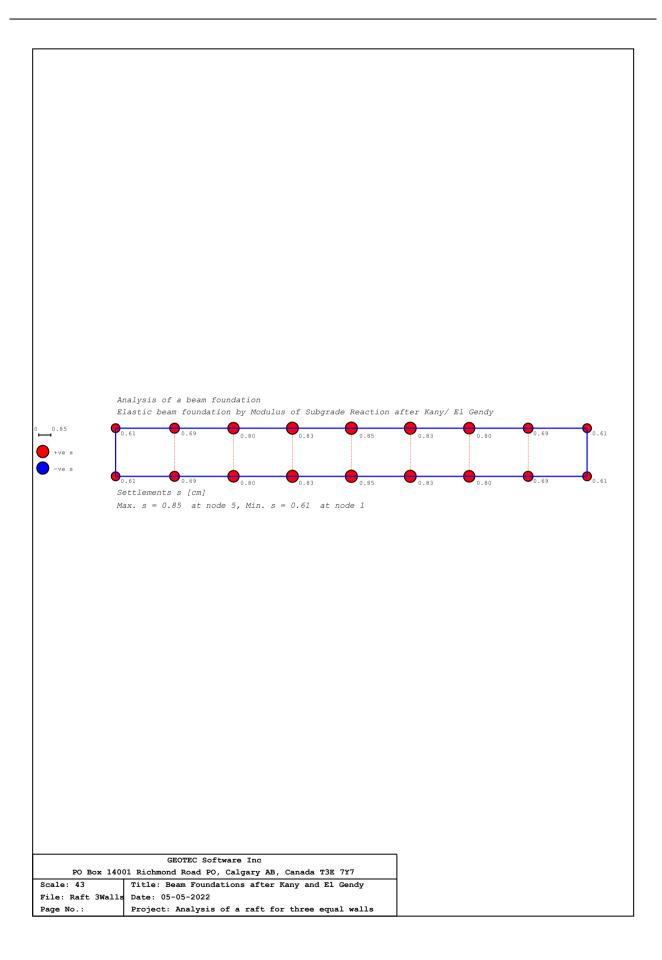
Element	Right sides of the
No.	system of equations
I	Rv
[-]	[m]
1	1.525E+04
2	3.05E+03
3	9.4732E-04
4	5.537E-03
5	1.1516E-02
6	1.979E-02
7	3.0358E-02
8	4.2316E-02

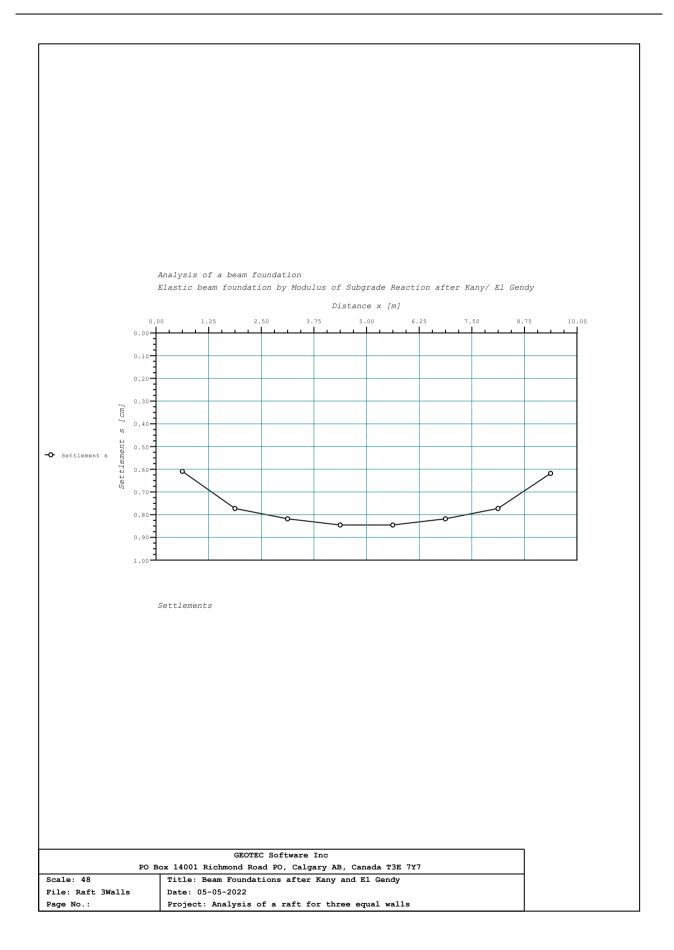

Settlements/ Contact pressures/ Moduli of subgrade reactions:

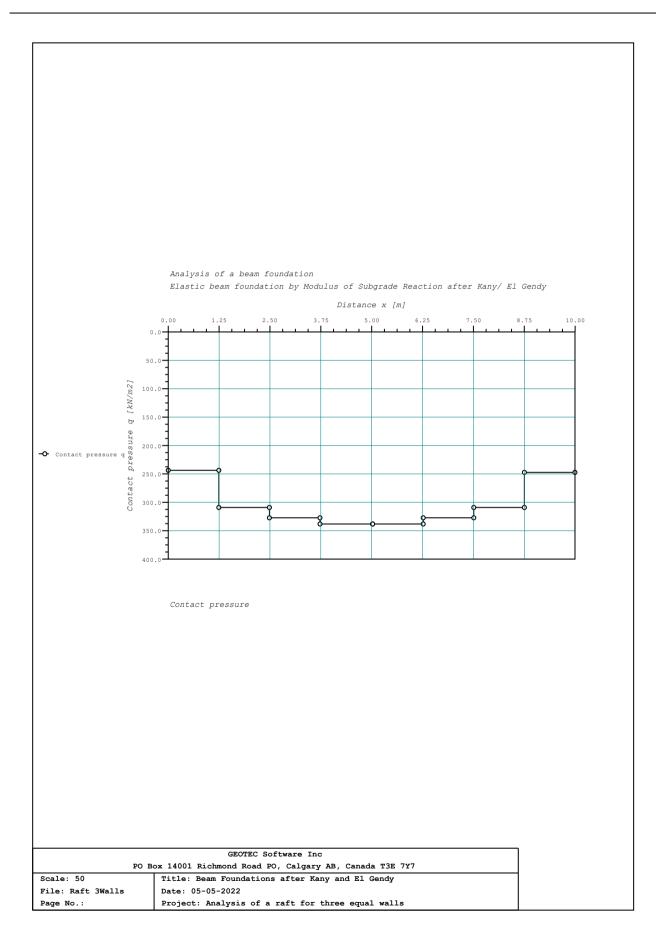

Element No.	Contact pressure	Settlement	Modulus of subgrade reaction
I [-]	q [kN/m2]	s [cm]	ks [kN/m3]
1 2 3 4 5 6 7 8	245.2 308.0 328.2 338.6 338.6 328.2 308.0 245.2	0.61 0.77 0.82 0.85 0.85 0.85 0.82 0.77 0.61	$\begin{array}{c} 4 \ 0 \ 0 \ 0 \\ 4 \ 0 \ 0 \ 0 \\ 4 \ 0 \ 0 \ 0 \\ 4 \ 0 \ 0 \ 0 \\ 4 \ 0 \ 0 \ 0 \\ 4 \ 0 \ 0 \ 0 \\ 4 \ 0 \ 0 \ 0 \\ 4 \ 0 \ 0 \ 0 \\ 4 \ 0 \ 0 \ 0 \\ \end{array}$

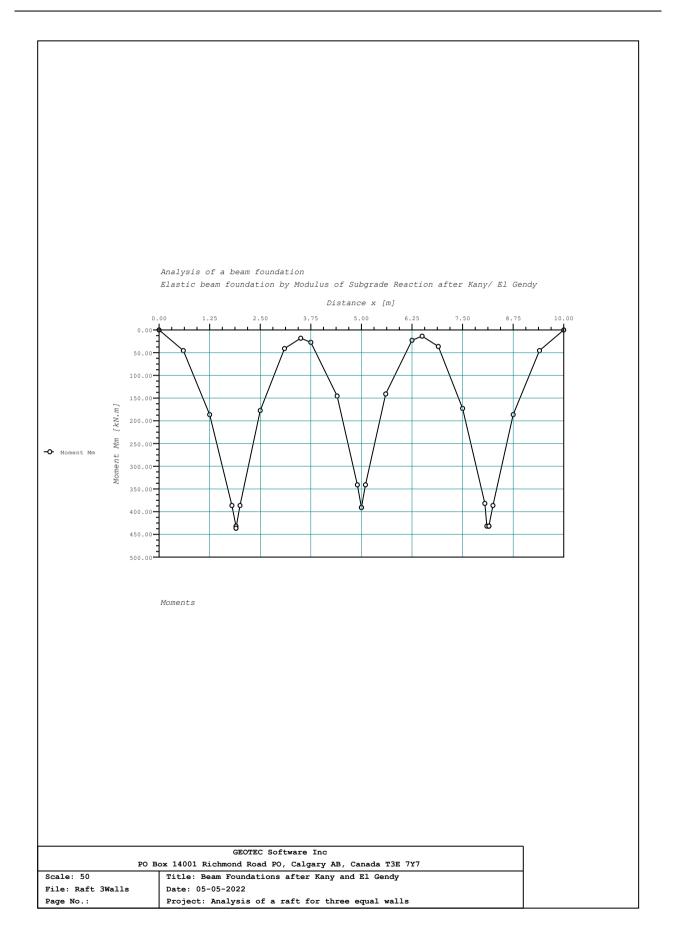

Moments/ Shear Forces:

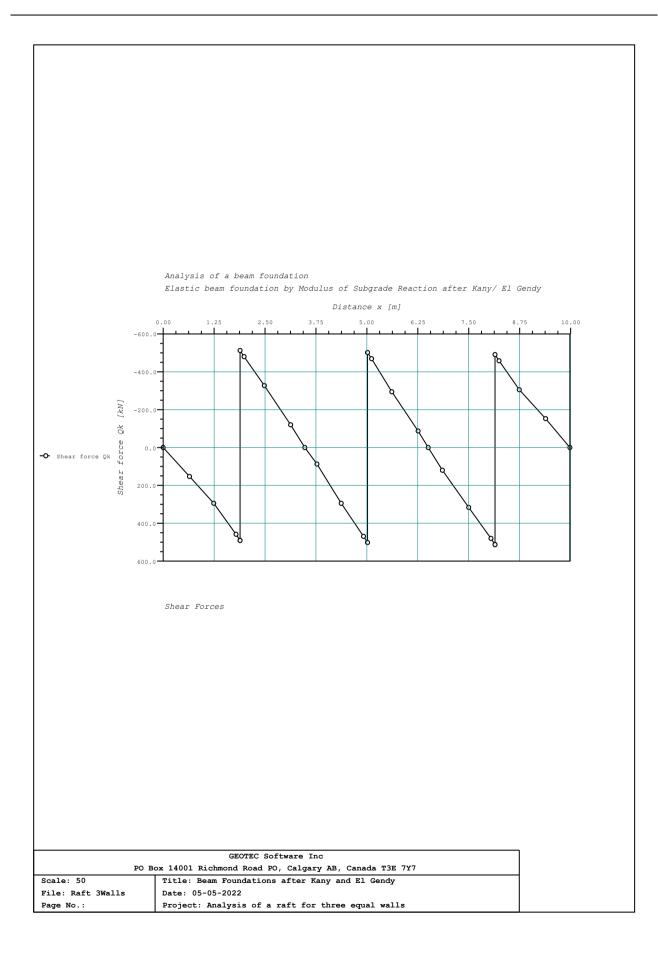

No.	Distance	Distance	Moment	Shear force
I	X		Mm	Qk
[-]	[m]	[-]	[kN.m]	[kN/m]
1	0.000		0.00	0.0
2	0.625		46.91	150.1
3	1.250		187.65	300.2
4	1.775	CL	387.02	459.3
5	1.875	CC	434.47	489.6
6	1.876	CC	433.96	-510.1
7	1.975	CR	384.94	-480.1
8	2.500		174.65	-321.0
9	3.125		37.13	-119.0
10	3.493	MM	15.23	0.0
11	3.750		25.89	83.0
12	4.375		142.94	291.5
13	4.900	CL	341.96	466.6
14	5.000	CC	390.29	500.0
15	5.001	CC	389.79	-499.7
16	5.100	CR	341.96	-466.6
17	5.625		142.95	-291.5
18	6.250		25.91	-83.0
19	6.507	MM	15.24	0.0
20	6.875		37.15	119.0
21	7.500		174.66	321.0
22	8.025	CL	384.96	480.1
23	8.125	CC	434.49	510.4
24	8.126	CC	434.00	-489.3
25	8.225	CR	387.04	-459.3
26	8.750		187.66	-300.2
27	9.375		46.92	-150.1
28	10.000		0.00	0.0


	Analysis of a beam foundation	
	Elastic beam foundation by Modulus of Subgrade Reaction after Kany/ El Gendy	
pf [kN/m2]		
Pv [kN]		
	System of loading	
	GEOTEC Software Inc	
Scale: 43	GEOTEC Software Inc 14001 Richmond Road PO, Calgary AB, Canada T3E TYT Title: Beam Foundations after Kany and El Gendy	
Scale: 43	GEOTEC Software Inc 14001 Richmond Road FO, Calgary AB, Canada T3E 7Y7	









10.7 Example5: Analysis of a raft for four equal walls

10.7.1 Description of the problem

Figure 10.1 shows plan and section with dimensions and loads for a raft of four equal walls. It is required to find the contact pressure distribution, settlements, moment and shear force diagrams for the raft. The loading and the raft are symmetrical.

Geometry:			
Thickness of the raft	d	=0.6	
Dimensions of the raft	A_{f}	=8×10	$[m^2]$
Groundwater depth under the ground surface	Tw	=1	[m]
Foundation depth under the ground surface	Tf	=2	[m]

Material pro	perties of the co	ncrete and unit	weight of the water
material pro	per nes or the co	ner ete ana anne	mengine of the mater

Modulus of elasticity of the concrete	$E_b = 2 \times 10^7$	$[kN/m^2]$
Unit weight of the concrete	$\gamma_b=25$	[kN/ m ³]
Unit weight of the water	$\gamma_w = 10$	[kN/ m ³]

Soil properties

Modulus of subgrade reaction of the soil $k_s = 20000 \text{ [kN/m}^3\text{]}.$

10.7.2 Preparing the calculation

The raft can be regarded as a beam on elastic foundation subjected to:

- A uniformly distributed loading p_f equal to the weight of the raft itself minus the uplift pressure from the ground water.
- Four concentrated forces from four walls $P_1 = P_4 = 200 \text{ [kN/m]}$ and $P_2 = P_3 = 300 \text{ [kN/m]}$.

Computing the uniform load on the raft

Own weight of the raft	$w_o = \gamma_b \times d = 25 \times 0.6$	=15	$[kN/m^2]$
Up lift pressure	$w_w = \gamma_w \times (T_f - T_w) = 10(2 - 1)$	=-10	$[kN/m^2]$
Total	$p_f =$	=5	$[kN/m^2]$

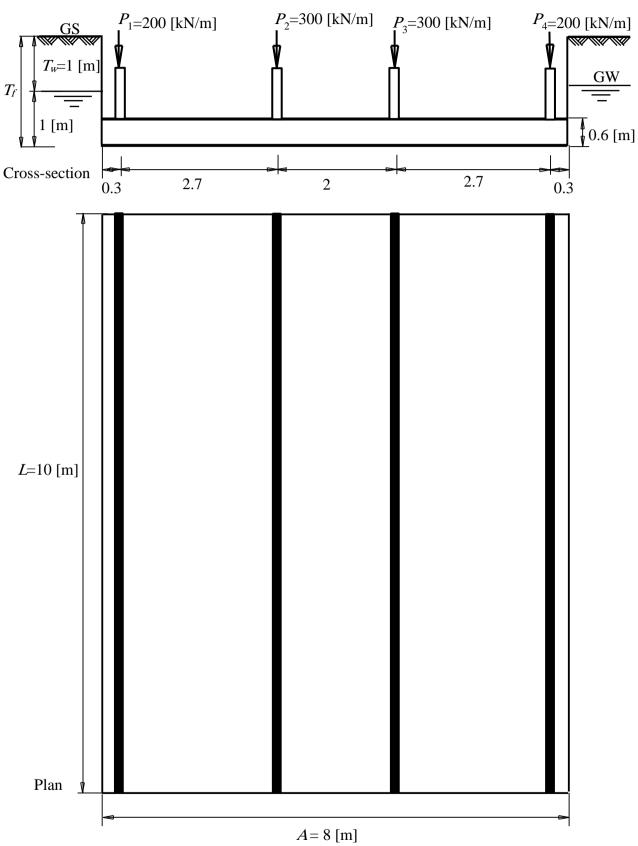


Figure 10.25 Raft of four equal walls

10.7.3 Hand calculation

Assume one-meter strip width from the raft and consider it as a beam on elastic foundation. The beam is divided into eight equal elements, each 1 [m] long (Figure 10.2). Because of the symmetry of the system, the analysis can be carried out by considering only half of the beam. Hence, the total number of equations is reduced to four.

According to *Kany/ El Gendy* (1995), the analysis of a beam on elastic foundation is carried out in the following steps:

10.7.3.1 Calculation of ui, vi and wi:

$$u_{i} = \frac{1}{2} \left(1 + \frac{I_{i}}{I_{i-1}} \right)$$
$$v_{i} = \frac{1}{4} \left(\frac{I_{i}}{I_{i-1}} + 14 + \frac{I_{i}}{I_{i+1}} \right)$$
$$w_{i} = \frac{1}{2} \left(1 + \frac{I_{i}}{I_{i+1}} \right)$$

For a constant beam, moment of inertia $I_i = I$, then

$$u_{i} = \frac{1}{2} \left(1 + \frac{I}{I} \right) = \frac{1}{2} \times 2 = 1$$
$$v_{i} = \frac{1}{4} \left(\frac{I}{I} + 14 + \frac{I}{I} \right) = \frac{1}{4} \times 16 = 4$$
$$w_{i} = \frac{1}{2} \left(1 + \frac{I}{I} \right) = \frac{1}{2} \times 2 = 1$$

10.7.3.2 Moment of inertia I_i and beam stiffness a_i :

$$I_i = I = \frac{Bd_i^3}{12} = \frac{1 \times 0.6^3}{12} = 0.018 [\text{m}^4]$$

and

$$\alpha_i = \alpha = \frac{a^4 B}{E_b I} = \frac{1^4 \times 1}{(2 \times 10^7)(0.018)} = \frac{1}{360000} [\text{m}^3/\text{kN}]$$

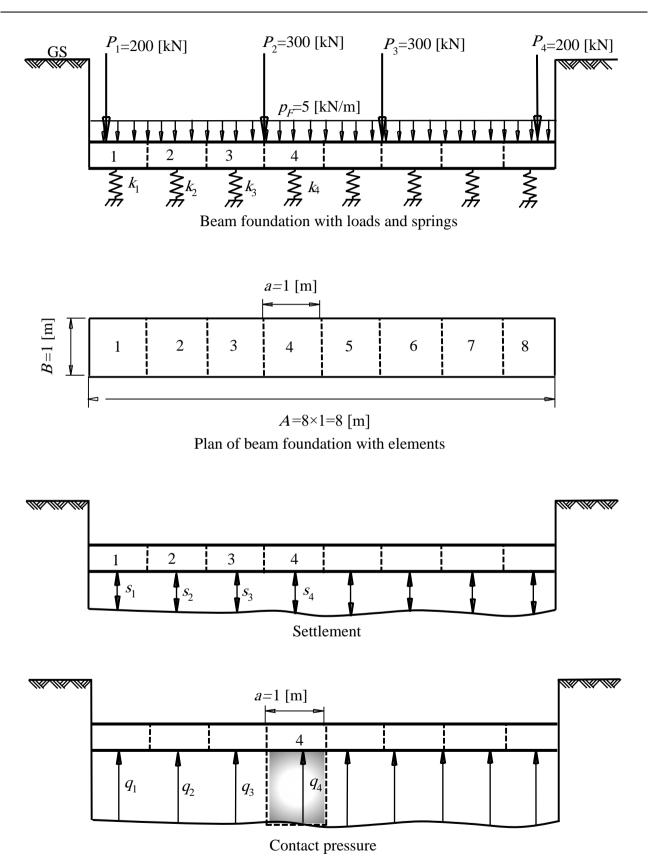


Figure 10.26 One meter strip width of the raft

10.7.3.3 Determining external moments $M_i^{(l)}$

The external moments $M_i^{(l)}$ at points 2, 3, 4 and 5 are:

$$M_{1}^{(l)} = 0$$

$$M_{2}^{(l)} = 200(1.5 - 0.3) + 5\frac{1.5^{2}}{2} = 245.625 \text{ [kN.m]}$$

$$M_{3}^{(l)} = 200(2.5 - 0.3) + 5\frac{2.5^{2}}{2} = 455.625 \text{ [kN.m]}$$

$$M_{4}^{(l)} = 200(3.5 - 0.3) + 5\frac{3.5^{2}}{2} + 300 \times 0.5 = 820.625 \text{ [kN.m]}$$

$$M_{5}^{(l)} = 200(4.5 - 0.3) + 5\frac{4.5^{2}}{2} + 300 \times 1.5 = 1340.625 \text{ [kN.m]}$$

10.7.3.4 Determining the right hand side R_i

The right hand side R_i of the contact pressure equation is:

$$R_{i} = \left(M^{(l)}_{i-1} + 4M^{(l)}_{i} + M^{(l)}_{i+1}\right) \frac{a^{2}}{6EI_{i}}$$

$$R_{i} = \left(M^{(l)}_{i-1} + 4M^{(l)}_{i} + M^{(l)}_{i+1}\right) \frac{1^{2}}{6 \times 2 \times 10^{7} \times 0.018}$$

$$R_{i} = \frac{1}{2160000} \left(M^{(l)}_{i-1} + 4M^{(l)}_{i} + M^{(l)}_{i+1}\right)$$

Apply the above equation at points 2, 3 and 4:

$$R_{2} = \frac{1}{2160000} (0 + 4 \times 245.625 + 455.625) = \frac{1438.125}{216000}$$

$$R_{3} = \frac{1}{2160000} (245.625 + 4 \times 455.625 + 820.625) = \frac{2888.75}{216000}$$

$$R_{4} = \frac{1}{2160000} (455.625 + 4 \times 820.625 + 1340.625) = \frac{5078.75}{216000}$$

10.7.3.5 Determining contact pressures

The contact pressure equation is:

$$\left(\frac{1}{k_{i+1}}\right)q_{i+1} - \left(\frac{2}{k_i} - \frac{\alpha_i}{6}w_i\right)q_i + \left(\frac{1}{k_{i-1}} + \frac{\alpha_i}{6}(v_i + 2w_i)\right)q_{i-1} + \frac{\alpha_i}{6}\left(\sum_{j=1}^{i-2}\left[(i-j-1)u_i + (i-j)v_i + (i-j+1)w_i\right]q_j\right) = R_i$$

-10.91-

$$\left(\frac{1}{k}\right)q_{i+1} - \left(\frac{2}{k} - \frac{\alpha}{6}\right)q_i + \left(\frac{1}{k} + \alpha\right)q_{i-1} + \alpha\left(\sum_{j=1}^{i-2}(i-j)q_j\right) = R_i$$

$$\left(\frac{1}{20000}\right)q_{i+1} - \left(\frac{2}{20000} - \frac{1}{360000 \times 6}\right)q_i + \left(\frac{1}{20000} + \frac{1}{360000}\right)q_{i-1} + \frac{1}{360000}\left(\sum_{j=1}^{i-2}(i-j)q_j\right) = R_i$$

or

108
$$q_{i+1}$$
 - 215 q_i + 114 q_{i-1} + 6 $\left(\sum_{j=1}^{i-2} (i-j)q_j\right)$ = 2160000 R_i

Apply the above equation at points 2, 3 and 4:

108
$$q_3$$
-215 q_2 +114 q_1 =1438.125
108 q_4 -215 q_3 +114 q_2 +12 q_1 =2888.75
-107 q_4 -114 q_3 +12 q_2 +18 q_1 =5078.75

There are four unknown q_1 , q_2 , q_3 , and q_4 , so a farther equation is required. This can be obtained by considering the overall equilibrium of vertical forces.

$$a \times B(q_1 + q_2 + q_3 + q_4 + q_5 + q_6 + q_7 + q_8) = P_1 + P_2 + P_3 + P_4 + A \times B \times P_f$$

or

$$q_1 + q_2 + q_3 + q_4 = 520$$

Contact pressure equations in matrix form:

1	1	1	1	$\left[q_{1} \right]$		520	
114	- 215	108	0	$ q_2 $	[1438.125	
12	114	- 215	108	$]q_3$		2888.75	ſ
18	12	114	-107	$\left q_4 \right $	J	5078.75	

Solving the above system of linear equations using *Gaussian*'s elimination to obtain the contact pressures q_1 , q_2 , q_3 , and q_4 .

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2.886 & -0.053 & -1 \\ 0 & 8.5 & -18.917 & 8 \\ 0 & -0.333 & 5.333 & -6.944 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} 520 \\ -507.385 \\ -279.271 \\ -237.845 \end{bmatrix}$$

$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$	0 1 0 0	0.982 0.018 - 2.244 - 16.018	$ \begin{array}{c} 0.653 \\ 0.347 \\ 0.594 \\ 20.486 \end{array} $	$\begin{vmatrix} y_2 \\ y_3 \end{vmatrix} = \begin{cases} 175.809 \\ -208.664 \end{cases}$
$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$	0 1 0 0	0 0 1 0	$\begin{array}{c} 0.913\\ 0.352\\ -0.265\\ -1.014 \end{array} \begin{bmatrix} q_1\\ q_2\\ q_3\\ q_4 \end{bmatrix}$	$ = \begin{cases} 252.877 \\ 174.135 \\ 92.988 \\ -126.559 \end{cases} $
	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 2 \\ 3 \end{vmatrix} = \begin{cases} 130.202 \\ 126.063 \end{cases}$	2
	$q_1 = q_2 = q_3 = q_4 =$	139.925 130.202 126.063 124.811	[kN/m ² [kN/m ² [kN/m ² [kN/m ²	²] ²]

10.7.3.6 Determining settlements s_i

The settlement s_i can be given by:

$$s_{i} = \frac{q_{i}}{k_{i}} = \frac{q_{i}}{20000} \text{ [m]}$$

$$s_{1} = 0.70 \text{ [cm]}$$

$$s_{2} = 0.65 \text{ [cm]}$$

$$s_{3} = 0.63 \text{ [cm]}$$

$$s_{4} = 0.62 \text{ [cm]}$$

The contact pressure distribution, settlement, moment and shear force diagrams for the raft are shown in Figure 10.3 to Figure 10.6. Once the internal forces are obtained at various sections, the design of the raft can be completed in the normal manner.

10.7.3.7 Computer calculation

The input data and results of *GEO Tools* are presented on the pages 10.15 to 10.26. By comparison, one can see an agreement with the hand calculation.

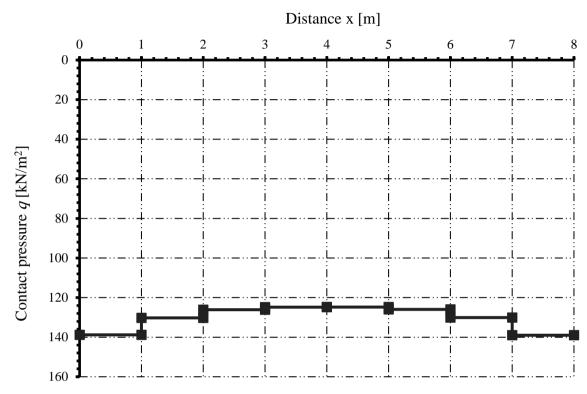


Figure 10.27 Contact pressures

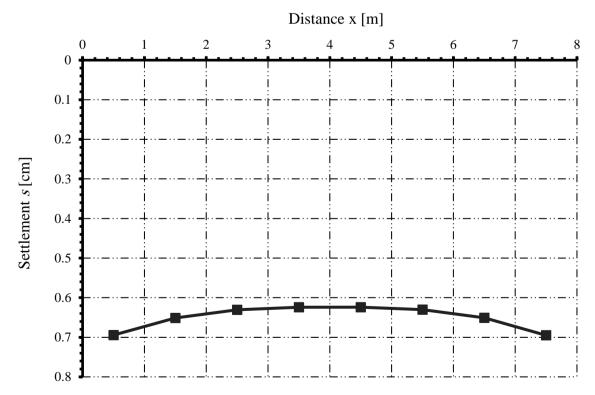


Figure 10.28 Settlements

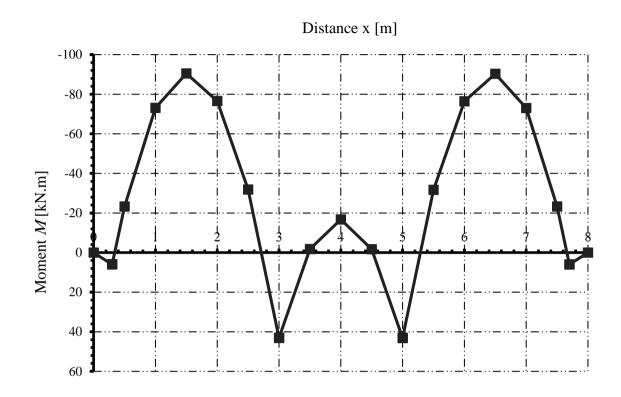


Figure 10.29 Moments

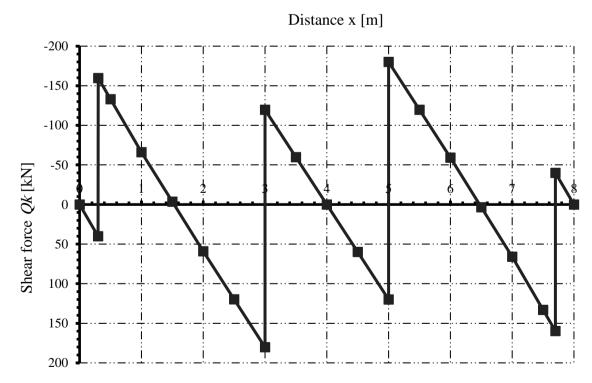


Figure 10.30 Shear forces

********** GEO Tools Version 12.3 Program authors M. El Gendy/ A. El Gendy * * * * * * * * * * Title: Beam Foundations after Kany and El Gendy Date: 05-05-2022 Project: Analysis of a raft for four equal walls File: Raft 4Walls _____ Analysis of beam a foundation Calculation method: Elastic beam foundation by Modulus of Subgrade Reaction after Kany/ El Gendy Data: Main Soil Data: Groundwater depth under the ground surface Tw [m] = 1.00 Foundation depth under ground surface Tf [m] = 2.00 Foundation depth under ground surface [m] Summary of loading: Pe [kN] = 120 Pa [kN] = 920 Pw [kN] = 80 Po=Pe+Pa-Pw [kN] = 1040 Self weight Load on Footing Groundwater force Total load [kN/m2] = 10.0 [kN/m2] = 130.0 Groundwater pressure Qw Average soil pressure 00 Beam Material: [kN/m2] = 20000000.00 [kN/m3] = 25.0 Modulus of elasticity of the concrete Eb Unit weight of footing concrete γb $\begin{array}{cccc} {\rm Tk} & [m] & = 1.40 \\ {\rm d} & [m] & = 0.60 \\ {\rm I} & [m4] & = 0.018 \\ {\rm \alpha B} & 1/[{\rm kN/m3}] & = 2.78{\rm E}{\rm -}06 \\ {\rm A} & [m] & = 8.00 \\ {\rm B} & [m^{-1}] \\ {\rm B} & [m^{-1}] \end{array}$ Dimensions: Depth of the foundation surface under ground Tk Beam thickness Moment of inertia of the beam Beam stiffness $\begin{bmatrix} m \\ m \end{bmatrix} = 8.00 \\ \begin{bmatrix} -1 \\ m \end{bmatrix} = 1.00 \\ \begin{bmatrix} m \\ m \end{bmatrix} = 1.00 \\ \begin{bmatrix} -1 \\ m \end{bmatrix} = 8.00 \\ \begin{bmatrix} m \\ m \end{bmatrix} = 1.00 \\ \begin{bmatrix} -1 \\ m \end{bmatrix} = 8$ Beam length (longitudinal) Beam width (transversal) A/B Length/width ratio a N Element size Number of elements of the beam Loads: Point Loads: _____ No. Load Load position Column Column Column value from the side side label left edge I P Xp a b Lb [-] [kN] [m] [m] [m] [-] No. -----
 1
 200
 0.30
 0.20
 1.00
 W1

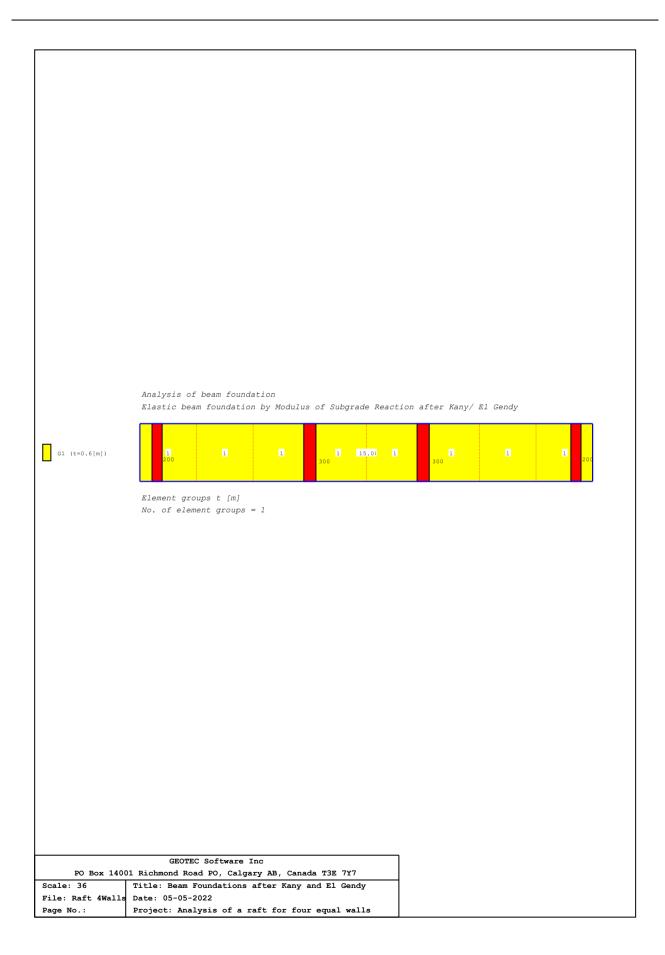
 2
 300
 3.00
 0.20
 1.00
 W2

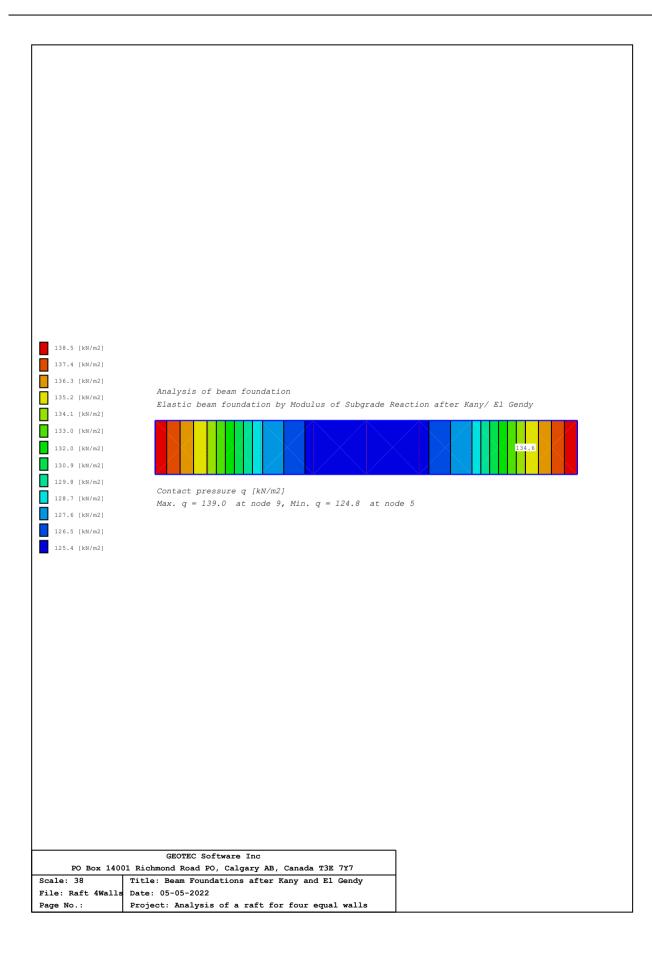
 3
 300
 5.00
 0.20
 1.00
 W3

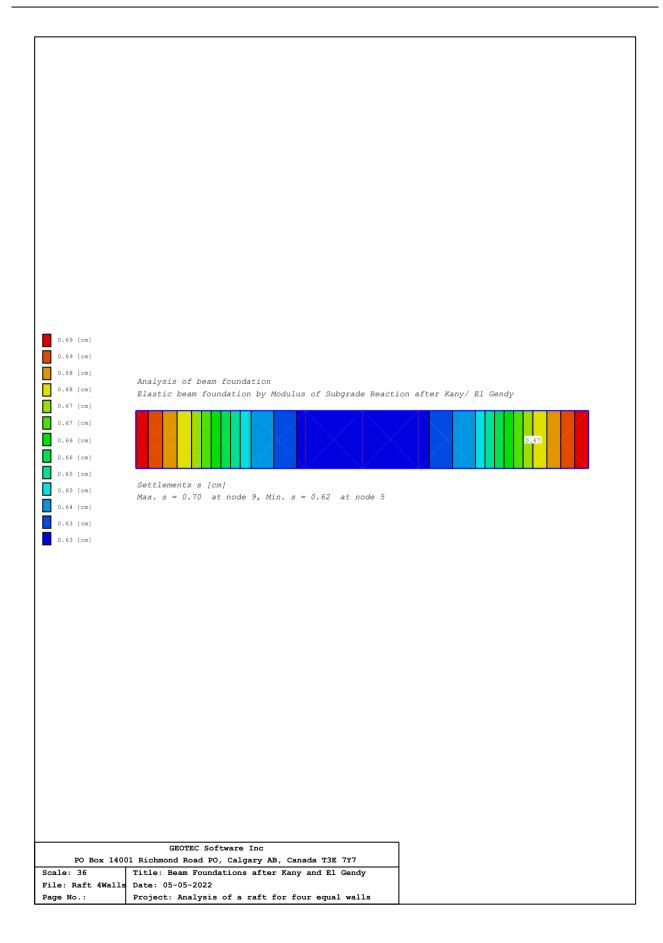
 4
 200
 7.70
 0.20
 1.00
 W4
 _____ Distributed Loads: _____ -----No. Load Load start from Load end from Load type value the left edge the left edge Pf Xpl Xpr [kN/m2] [m] [m] I Xpl Xpr [m] [m] [-] [kN/m2] [-] _____ 1 -10 2 15 0.00 8.00 (Groundwater pressure) 0.00 8.00 (Self weight) -----

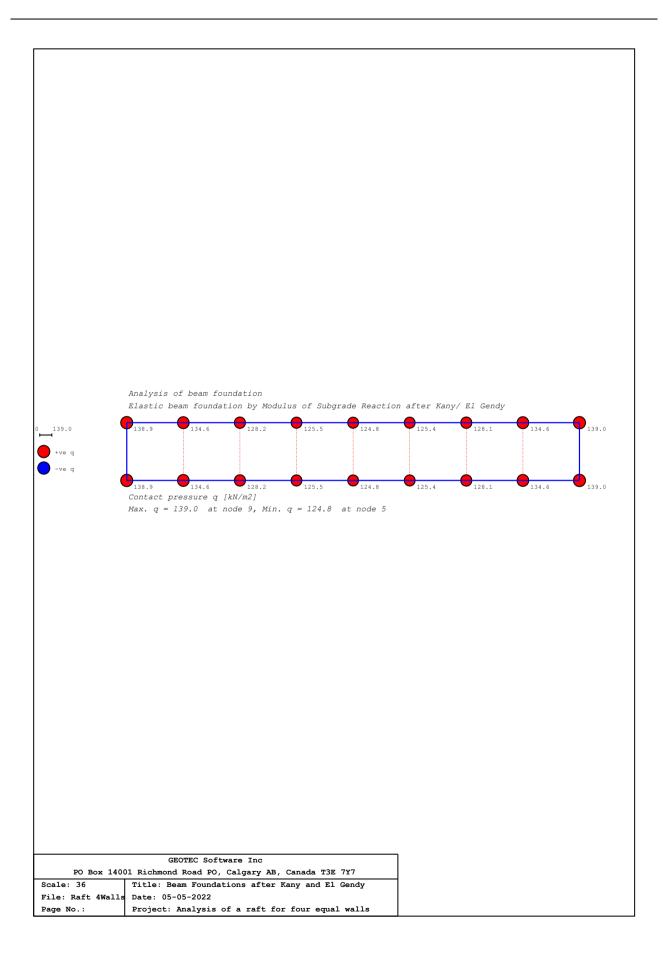
Right sides of the system of equations:

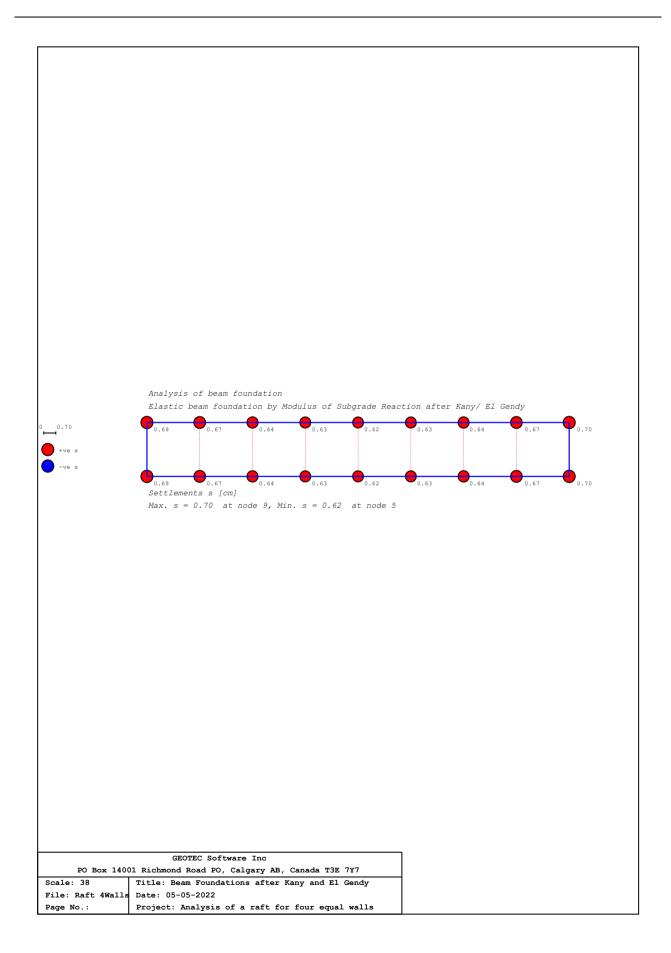
Element	Right sides of the
No.	system of equations
I	Rv
[-]	[m]
1	4.16E+03
2	1.04E+03
3	6.658E-04
4	1.3374E-03
5	2.3513E-03
6	3.7957E-03
7	5.6707E-03
8	7.9068E-03

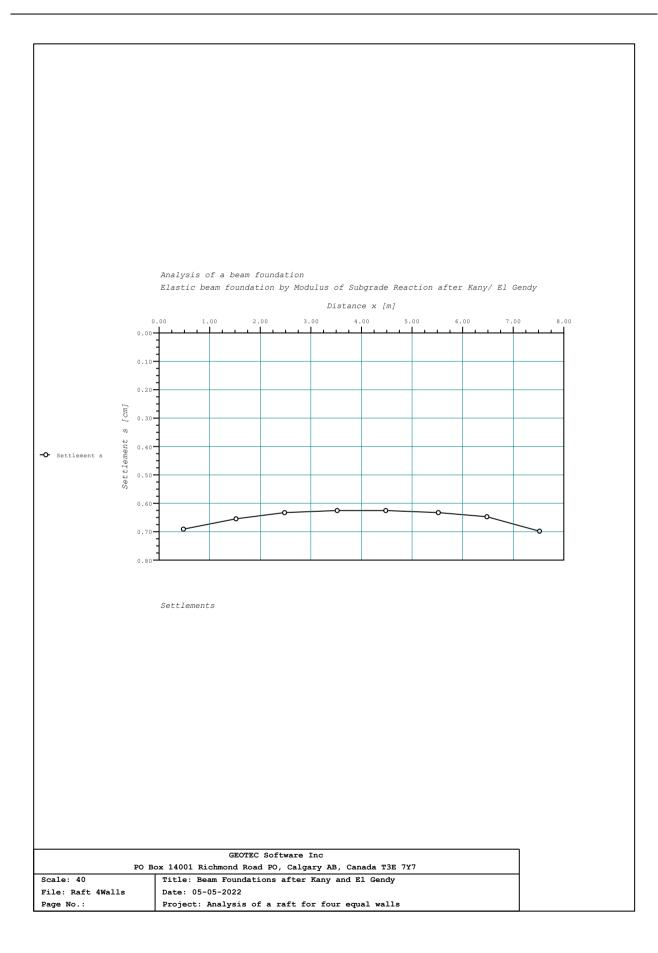

Settlements/ Contact pressures/ Moduli of subgrade reactions:

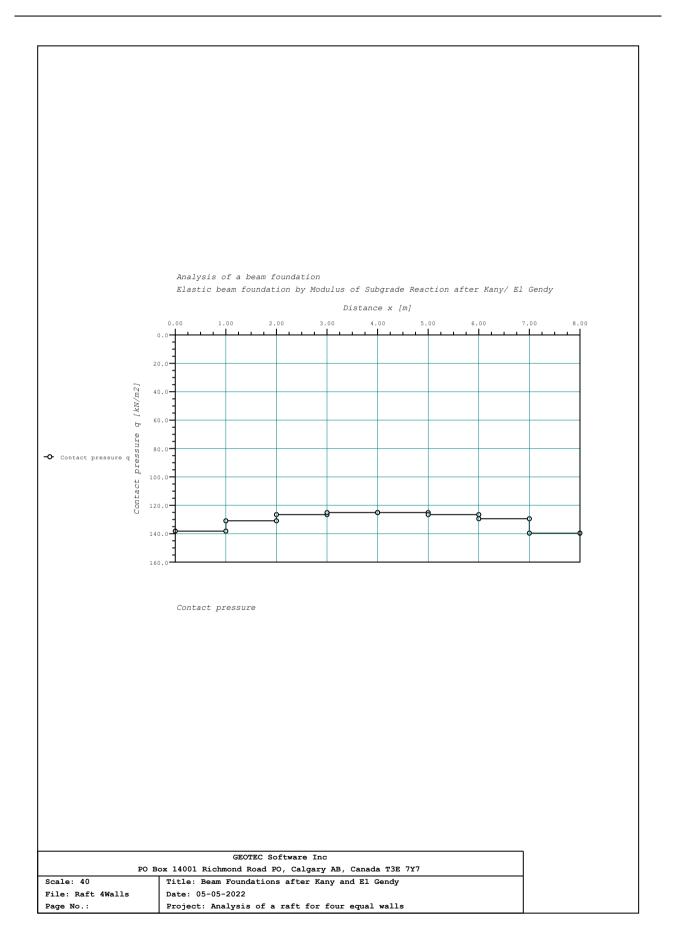

Element No.	Contact pressure	Settlement	Modulus of subgrade reaction
I	q	S	ks
[-]	[kN/m2]	[cm]	[kN/m3]
1	138.9	0.69	20000
2	130.3	0.65	20000
3	126.1	0.63	20000
4	124.8	0.62	20000
5	124.8	0.62	20000
6	126.0	0.63	20000
7	130.1	0.65	20000
8	139.0	0.70	20000

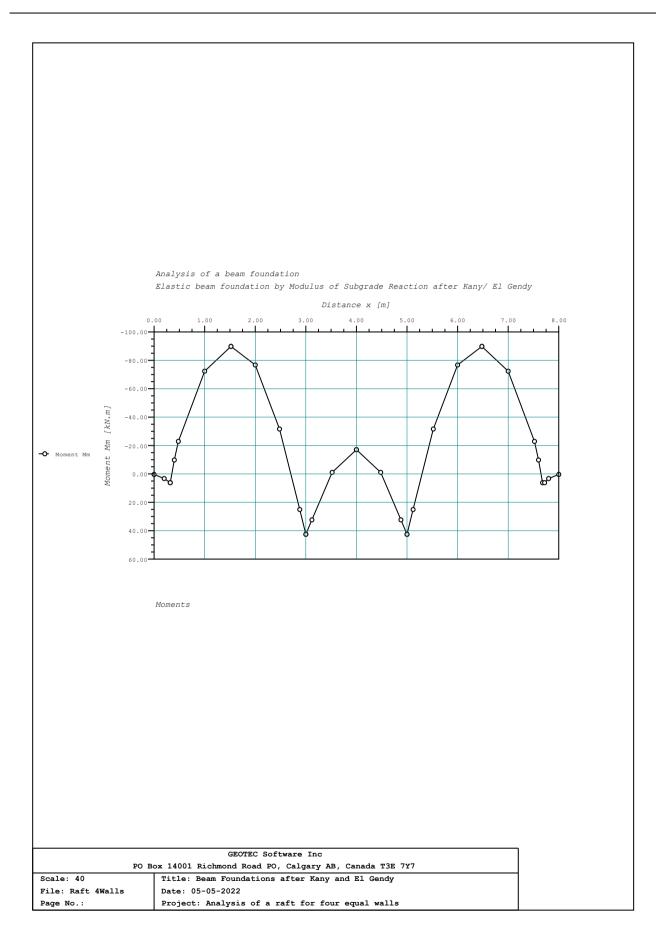

Moments/ Shear Forces:

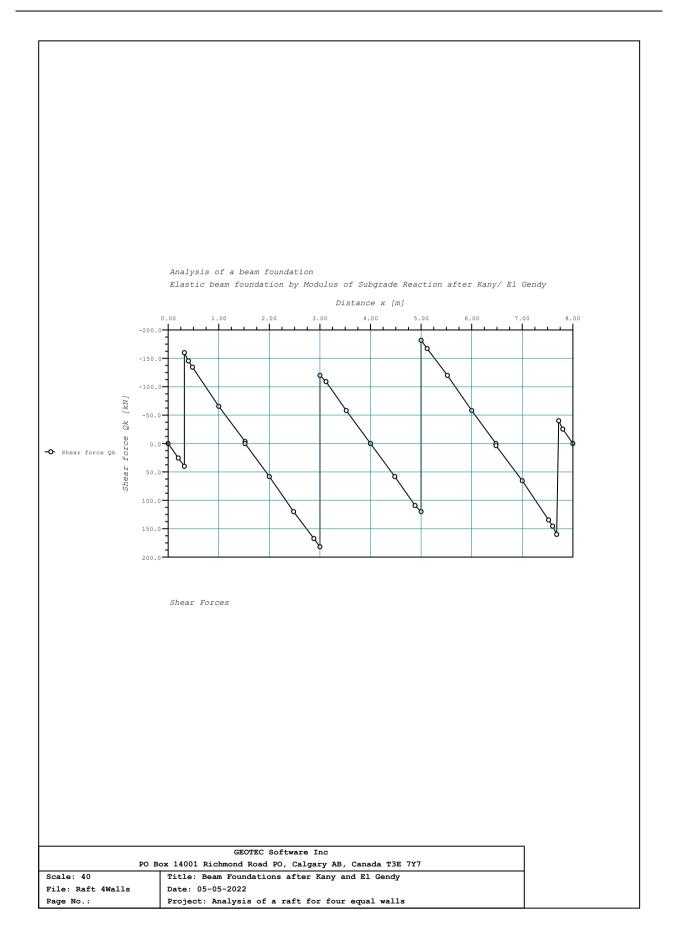

No.	Distance	Distance	Moment	Shear force
I	X		Mm	Qk
[-]	[m]	[-]	[kN.m]	[kN/m]
1	0.00		0.0	0.0
2	0.20	CL	2.7	26.8
3	0.30	CC	6.0	40.2
4	0.30	CC	5.9	-159.7
5	0.40	CR	-9.3	-146.5
6	0.50		-23.3	-133.1
7	1.00		-73.1	-66.1
8	1.50		-90.5	-3.5
9	1.53	MM	-90.5	0.0
10	2.00		-76.6	59.1
11	2.50		-31.9	119.7
12	2.90	CL	25.7	168.1
13	3.00	CC	43.1	180.2
14	3.00	CC	43.0	-119.6
15	3.10	CR	31.7	-107.8
16	3.50		-1.8	-59.9
17	4.00	MM	-16.7	0.0
18	4.00		-16.7	0.1
19	4.50		-1.7	60.0
20	4.90	CL	31.8	107.9
21	5.00	CC	43.2	119.9
22	5.00	CC	43.0	-180.0
23	5.10	CR	25.8	-168.0
24	5.50		-31.7	-119.6
25	6.00		-76.4	-59.1
26	6.47	MM	-90.4	0.0
27	6.50		-90.3	3.4
28	7.00		-73.0	66.0
29	7.50		-23.2	133.0
30	7.60	CL	-9.3	146.4
31	7.70	CC	6.0	159.8
32	7.70	CC	6.0	-40.1
33	7.80	CR	2.7	-26.8
34	8.00		0.0	0.0

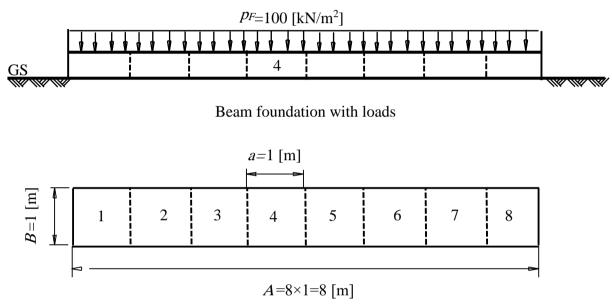

	Analysis of beam foundation
	Elastic beam foundation by Modulus of Subgrade Reaction after Kany/ El Gendy
X pf [kN/m2]	
_	O _{200.0} () _{300.0} (15.0) (O _{200.0} (O _{200.0})
Pv [kN]	200.0 300.0 300.0 200.0
	System of loading
	GEOTEC Software Inc
PQ Box 1400	GEOTEC Software Inc
	GEOTEC Software Inc 11 Richmond Road FO, Calgary AB, Canada T3E 7Y7
Scale: 38	GEOTEC Software Inc 11 Richmond Road PO, Calgary AB, Canada T3E 7Y7 Title: Beam Foundations after Kany and El Gendy
Scale: 38	GEOTEC Software Inc 11 Richmond Road FO, Calgary AB, Canada T3E 7Y7










10.8 Example 6: Analysis of flexible and rigid beams

10.8.1 Description of the problem

Error! Reference source not found. shows a beam foundation having dimensions of $1 \times 8 \text{ [m^2]}$ and a uniform load of 100 [kN/m²]. The subsoil under the beam is an Isotropic Elastic Half Space Soil Medium with Modulus of Compressibility of $E_s = 5000 \text{ [kN/m^2]}$ and *Poission's* ratio $v_s=0$.

It is required to determine numerically:

- a) The settlement under the flexible beam.
- b) The settlement and contact pressure under the rigid beam.

Plan of beam foundation with elements

Figure 10.31 Beam foundation on an Isotropic Elastic Half Space Soil Medium

Geometry:

Dimensions of the beam	= 8.0 [m] × 1.0 [m]

Soil properties Modulus of elasticity of the soil $E_s = 5000 \text{ [kN/m^2]}$

Loads on the beam Uniform load

 $p_f = 100 [kN/m^2]$

10.8.2 Hand calculation

Consider the footing as a rigid beam on elastic foundation. The beam is divided into eight equal elements, each 1.0 [m] long (Figure 10.31). Because of the symmetry of the system, the analysis can be carried out by considering only half of the beam. Hence, the total number of equations is reduced to four.

The analysis of a rigid and flexible beam on elastic foundation is carried out in the following steps:

10.8.2.1 Determining flexibility coefficients

10.8.2.1.1 Flexibility coefficients co, o of point o due to a load at that point o

The settlement $s_{o,o}$ at the center of a circular element o of a radius r_o [m] having a circular loaded area of intensity q_o [kN/m²] = $Q_o/\pi r_o^2$ acting on the surface as shown in Figure 10.32 is given by:

$$s_{o,o} = \frac{2q_o (1 - v_s^2) r_o}{E_s} = \frac{2Q_o (1 - v_s^2)}{\pi r_o E}$$

or

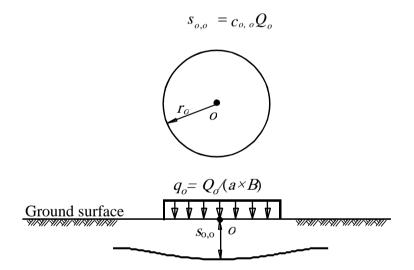


Figure 10.32 Circular loaded area on the surface

where $c_{o,o}$ is the flexibility coefficient of point *o* due to a load at that point *o* [m/kN].

This coefficient is given by:

$$c_{o,o} = \frac{2(1-v_s^2)}{\pi r_o E} = \frac{2(1-0)}{\pi 5000 r_o}$$

For simplicity, the rectangular element of size $B \times a = 1 \times 1$ is converted to an equivalent circular area.

$$\pi r_0^2 = a \times 1 m$$
 so $r_0 = 0.5642$ [m]

Flexibility coefficient $c_{o,o}$ [m/kN] due to contact force Q_o [kN] under the same point

$$C_{o,o} = \frac{2(1 - v_s^2)}{\pi r_0 E_s} = \frac{2(1 - 0)}{\pi \times 0.5642 \times 5000} = 22.5672 \times 10^{-5} \text{ [m/kN]}$$

10.8.2.1.2 Flexibility coefficients ci, j of point i due to a concentrated load at point j

The settlement $s_{i,j}$ [m] at point *i* due to a concentrated load Q_j [kN] at point *j* for isotropic elastic half-space soil medium (Figure 10.33) is given by:

$$s_{i,j} = \frac{Q_j \left(1 - v_s^2\right)}{\pi E r_{i,j}}$$

or

$$s_{i,j} = c_{i,j}Q_{j}$$

$$r_{i,j}$$

$$Q_{j}$$

$$j$$

$$S_{i,j}$$

$$S_{i,j}$$

Figure 10.33 Isotropic elastic half-space soil medium

where $r_{i,j}$ [m] is the radial distance between points *i* and *j* [m] and $c_{i,j}$ [m/kN] is the flexibility coefficient of a point *i* due to a load Q_j [kN] at point *j*.

This coefficient is given by:

$$c_{i,j} = \frac{\left(1 - v_s^2\right)}{\pi E r_{i,j}} = \frac{1}{\pi 5000 r_{i,j}}$$

The flexibility coefficients $c_{i,j}$ and c_i are calculated in Table 10.1.

Table 10.1 Flexibility coefficients c_i and $c_{i,j}$

Flexibility	$C_{i,j} =$	$C_{i,j} =$	$C_{i, j} =$	$C_{i,j}=$	Radial	Flexibility coefficient
coefficient	$C_{j, i}$	$C_{j, i}$	$C_{j,i}$	$C_{j, i}$	distance	$6.3662 * 10^{-5}$
ci	<i>j</i> , t	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>J</i> , <i>c</i>	<i>,,,,</i>	Г і, ј	$C_{i,j} = r_{i,j}$
					[m]	[m/kN]
Co	<i>C</i> _{1,1}	C _{2,2}	C3,3	C4,4	0	22.5672×10 ⁻⁵
c_1	<i>C</i> _{1,2}	<i>C</i> _{2,3}	<i>C</i> 3,4	C4,5	<i>a</i> =1	6.3662×10 ⁻⁵
С2	C1,3	С2,4	C3,5	C4,6	2 <i>a</i> =2	3.1831×10 ⁻⁵
С3	C1,4	C2,5	C3,6	C4,7	3 <i>a</i> =3	2.1221×10 ⁻⁵
<i>C</i> 4	C1,5	C2,6	C3,7	C4,8	4 <i>a</i> =4	1.5916×10 ⁻⁵
С5	C _{1,6}	<i>C</i> _{2,7}	C3,8		5 <i>a</i> =5	1.2732×10 ⁻⁵
<i>C</i> ₆	<i>C</i> _{1,7}	C _{2,8}			6 <i>a</i> =6	1.061×10 ⁻⁵
С7	C1,8				7 <i>a</i> =7	9.0946×10 ⁻⁶

10.8.2.1.3 Settlement-contact pressure equations

For *B*=1 [m] and *a*=1 [m]

$$Q_j = q_j a \ b = q_j$$

And due to the symmetry

$$q_1 = q_8, q_2 = q_7, q_3 = q_6, q_4 = q_5$$

The settlement at the center of the element is given by:

$$s_{i} = \sum_{j=1}^{i} c_{i \cdot j} q_{j} + \sum_{j=i+1}^{n} c_{j \cdot i} q_{j}$$

Applying above equation at points 1 to 4

$$s_{1} = (c_{0} + c_{7}) q_{1} + (c_{1} + c_{6}) q_{2} + (c_{2} + c_{5}) q_{3} + (c_{3} + c_{4}) q_{4}$$

$$s_{2} = (c_{1} + c_{6}) q_{1} + (c_{0} + c_{5}) q_{2} + (c_{1} + c_{4}) q_{3} + (c_{2} + c_{3}) q_{4}$$

$$s_{3} = (c_{2} + c_{5}) q_{1} + (c_{1} + c_{4}) q_{2} + (c_{0} + c_{3}) q_{3} + (c_{1} + c_{2}) q_{4}$$

$$s_{4} = (c_{3} + c_{4}) q_{1} + (c_{2} + c_{3}) q_{2} + (c_{1} + c_{2}) q_{3} + (c_{0} + c_{1}) q_{4}$$

or

$$s_{1} = 23.477 \times 10^{-5} q_{1} + 7.427 \times 10^{-5} q_{2} + 4.456 \times 10^{-5} q_{3} + 3.714 \times 10^{-5} q_{4}$$

$$s_{2} = 7.427 \times 10^{-5} q_{1} + 23.840 \times 10^{-5} q_{2} + 7.958 \times 10^{-5} q_{3} + 5.305 \times 10^{-5} q_{4}$$

$$s_{3} = 4.456 \times 10^{-5} q_{1} + 7.958 \times 10^{-5} q_{2} + 24.689 \times 10^{-5} q_{3} + 9.549 \times 10^{-5} q_{4}$$

$$s_{4} = 3.714 \times 10^{-5} q_{1} + 5.305 \times 10^{-5} q_{2} + 9.549 \times 10^{-5} q_{3} + 28.933 \times 10^{-5} q_{4}$$

Settlement-contact pressure in matrix form:

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} = 10^{-5} \begin{bmatrix} 23.477 & 7.427 & 4.456 & 3.714 \\ 7.427 & 23.840 & 7.958 & 5.305 \\ 4.456 & 7.958 & 24.689 & 9.549 \\ 3.714 & 5.305 & 9.549 & 28.933 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix}$$

10.8.2.1.4 Determining flexible settlements si

For flexible beam analysis q_1 , q_2 , q_3 , and q_4 are known, while s_1 , s_2 , s_3 , and s_4 are required to determine. Substituting $q_1=q_2=q_3=q_4=100$ [kN/m²] in matrix equation of the settlement-contact pressure:

$[S_1]$		23.477	7.427	4.456	3.714]	[100]
<i>S</i> ₂	- 10-5	7.427	7.427 23.840 7.958 5.305	7.958	5.305	100
<i>S</i> ₃	- 10	4.456	7.958	24.689	9.549	100
S_4		3.714	5.305	9.549	28.933	[100]

Gives the flexible settlements at point 1 to 4:

 $s_1 = 3.91$ [cm] $s_2 = 4.45$ [cm] $s_3 = 4.67$ [cm] $s_4 = 4.75$ [cm]

10.8.2.1.5 Determining rigid settlements so

For rigid beam analysis s_1 , s_2 , s_3 , and s_4 are equal and have the same value s_0 . The unknown of the problem are s_0 , q_1 , q_2 , q_3 , and q_4 .

$\begin{bmatrix} S_1 \end{bmatrix}$	23.477	7.427	4.456	3.714]	$[q_1]$
$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} = 10^{-5}$	7.427	23.840	7.958	5.305	q_2
$ s_3 = 10$	4.456	7.958	24.689	9.549	q_3
$\lfloor s_4 \rfloor$	3.714	5.305	9.549	28.933	$\left\lfloor q_4 \right\rfloor$

Inversing the flexibility matrix, gives:

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} 4782.052 & -1319.26 & -337.01 & -260.732 \\ -1319.26 & 5108.15 & -1274.31 & -346.683 \\ -337.01 & -1274.31 & 5060.878 & -1393.37 \\ -260.732 & -346.683 & -1393.37 & 4013.162 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix}$$

For rigid beam
$$s_1 = s_2 = s_3 = s_4 = s_0$$
 [m]

Then

$[q_1]$		4782.052	-1319.26	-337.01	-260.732]	$[S_o]$
q_2	_	-1319.26	-1319.26 5108.15 -1274.31 -346.683	-1274.31	-346.683	S_o
q_3	_	-337.01	-1274.31	5060.878	-1393.37	S_o
$\left[q_{4} \right]$		-260.732	-346.683	-1393.37	4013.162	$[s_o]$

Multiplying both sides by *a*.*B*

$[a. B. q_1]$	[4782.052	-1319.26	-337.01	-260.732]	$[S_0]$
$\begin{vmatrix} a. B. q_2 \\ a. B. q_3 \end{vmatrix} = a. B s$		5108.15	-1274.31	-346.683	S_0
$\left a.B.q_3\right ^{-a.b.s}$	-337.01	-1274.31	5060.878	-1393.37	S_0
$\begin{bmatrix} a. B. q_4 \end{bmatrix}$	-260.732	-346.683	-1393.37	4013.162	$[s_o]$

or

$$\begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{bmatrix} = \begin{bmatrix} 4782.052 & -1319.26 & -337.01 & -260.732 \\ -1319.26 & 5108.15 & -1274.31 & -346.683 \\ -337.01 & -1274.31 & 5060.878 & -1393.37 \\ -260.732 & -346.683 & -1393.37 & 4013.162 \end{bmatrix} \begin{bmatrix} s_0 \\ s_0 \\ s_0 \end{bmatrix}$$

-10.112-

Expanding the above equation matrix for all elements and equating all settlements by uniform rigid body translation s_o , yields to the contact forces as a function in s_o as follows:

$$Q_{1} = 4782.052s_{o} - 1319.26s_{o} - 337.01s_{o} - 260.732s_{o}$$
$$Q_{2} = -1319.26s_{o} + 5108.15s_{o} - 1274.31s_{o} - 346.683s_{o}$$
$$Q_{3} = -337.01s_{o} - 1274.31s_{o} + 5060.878s_{o} - 1393.37s_{o}$$
$$Q_{4} = -260.732s_{o} - 346.683s_{o} - 1393.37s_{o} + 4013.162s_{o}$$

Carrying out the summation of all contact forces, leads to:

$$\sum_{i=1}^{4} Q_i = 9101.498 s_o$$

Replacing the sum of all contact forces by the resultant force $N/2=100\times1\times8/2=400$ [kN], gives rigid body translation s_o , which equals to the settlement s_i at all elements.

$$400 = 9101.498s_o$$

 $s_o = 4.3949$ [cm]

The rigid settlement is

10.8.2.1.6 Determining rigid contact pressures qi

Substituting the uniform rigid body translation s_o =0.043949 gives the *n* unknown contact pressures q_i by:

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} 4782.052 & -1319.26 & -337.01 & -260.732 \\ -1319.26 & 5108.15 & -1274.31 & -346.683 \\ -337.01 & -1274.31 & 5060.878 & -1393.37 \\ -260.732 & -346.683 & -1393.37 & 4013.162 \end{bmatrix} \begin{bmatrix} 0.043949 \\ 0.043949 \\ 0.043949 \\ 0.043949 \end{bmatrix}$$

$$q_1 = 125.92 \text{ [kN/m^2]}$$

 $q_2 = 95.28 \text{ [kN/m^2]}$
 $q_3 = 90.36 \text{ [kN/m^2]}$
 $q_4 = 88.44 \text{ [kN/m^2]}$

10.8.2.2 Computer calculation

The input data and results of *GEO Tools* are presented on the pages 10.114 to 10.115. By comparison, one can see an agreement with the hand calculation.

********** GEO Tools Version 12.3 Program authors M. El Gendy/ A. El Gendy ****** Title: Beam Foundations after Kany and El Gendy Date: 05-05-2022 Data: Main Soil Data: Summary of loading:
 Pe
 [kN]
 = 0.000

 Pa
 [kN]
 = 800.000

 Pw
 [kN]
 = 0.000

 Po=Pe+Pa-Pw
 [kN]
 = 800.000
 Self weight Load on Footing Groundwater force Total load Qw [kN/m2] = 0.0Groundwater pressure $Q_0 = Q_u + Q_e$ [kN/m2] = 100.0 Average soil pressure Dimensions:

 A
 [m]
 = 8.00

 B
 [m]
 = 1.00

 A/B
 [-]
 = 8.00

 a
 [m]
 = 1.00

 N
 [-]
 = 8

 Beam length (longitudinal) Beam width (transversal) Length/width ratio Element size Number of elements of the beam Loads: Distributed Loads: _____ No. Load Load start from Load end from value the left edge the left edge I Pf Xpl Xpr [-] [kN/m2] [m] [m] _____ 1 100.000 0.00 8.00 _____ _____ Boring: Modulus of compressibility Es [kN/m2] = 5000 Results: Flexibility coefficients of the soil: _____ Element Flexibility coefficients of the soil No. Ci,j Т 1/[kN/m3] [—] _____ .2257E-03 1 2 .6366E-04 .3183E-04 3 4 .2122E-04 5 .1592E-04 .1273E-04 6 7 .1061E-04 8 .9095E-05 _____

Analysis of a beam foundation Calculation method: Flexible beam foundation by Modulus of Compressibility

Settlements/ Contact pressures/ Moduli of subgrade reactions:

Element No.	Contact pressure	Settlement	Modulus of subgrade reaction
I	q	S	ks
[-]	[kN/m2]	[cm]	[kN/m3]
1	100.0	3.91	2559
2	100.0	4.45	2246
3	100.0	4.67	2143
4	100.0	4.75	2105
5	100.0	4.75	2105
6	100.0	4.67	2143
7	100.0	4.45	2246
8	100.0	3.91	2559

Analysis of a beam foundation

Calculation method: Rigid beam foundation by Modulus of Compressibility after Kany

Settlements/ Contact pressures/ Moduli of subgrade reactions:

Element No.	Contact pressure	Settlement	Modulus of subgrade reaction
I	q	S	ks
[-]	[kN/m2]	[cm]	[kN/m3]
1	125.9	4.39	2865
2	95.3	4.39	2168
3	90.4	4.39	2056
4	88.4	4.39	2012
5	88.4	4.39	2012
6	90.4	4.39	2056
7	95.3	4.39	2168
8	125.9	4.39	2865